diff --git a/mindspore/ops/composite/clip_ops.py b/mindspore/ops/composite/clip_ops.py index dbc65e0fc0..02ac7d3380 100644 --- a/mindspore/ops/composite/clip_ops.py +++ b/mindspore/ops/composite/clip_ops.py @@ -124,13 +124,13 @@ def clip_by_global_norm(x, clip_norm=1.0, use_norm=None): >>> x2 = np.array([[1., 4.],[3., 1.]]).astype(np.float32) >>> input_x = (Tensor(x1), Tensor(x2)) >>> out = clip_by_global_norm(input_x, 1.0) + >>> print(out) ([[ 2.98142403e-01, 4.47213590e-01], [ 1.49071202e-01, 2.98142403e-01]], - [[ 1.49071202e-01, 5.96284807e-01], [ 4.47213590e-01, 1.49071202e-01]]) """ clip_norm = _check_value(clip_norm) - out = _ClipByGlobalNorm(clip_norm, use_norm)(x) - return out + clip_val = _ClipByGlobalNorm(clip_norm, use_norm)(x) + return clip_val diff --git a/mindspore/ops/composite/math_ops.py b/mindspore/ops/composite/math_ops.py index 03b8ef6f27..45bc42c928 100644 --- a/mindspore/ops/composite/math_ops.py +++ b/mindspore/ops/composite/math_ops.py @@ -41,22 +41,22 @@ def count_nonzero(x, axis=(), keep_dims=False, dtype=mstype.int32): Count number of nonzero elements across axis of input tensor Args: - - **x** (Tensor[Number]) - Input data is used to count non-zero numbers. - - **axis** (Union[int, tuple(int), list(int)]) - The dimensions to reduce. Only constant value is allowed. - Default: (), reduce all dimensions. - - - **keep_dims** (bool) - If true, keep these reduced dimensions and the length is 1. - If false, don't keep these dimensions. Default: False. - - **dtype** (Union[Number, mstype.bool_]) - The data type of the output tensor. Only constant value is allowed. - Default: mstype.int32 + x (Union(tuple[Tensor], list[Tensor])): Input data is used to count non-zero numbers. + axis (Union[int, tuple(int), list(int)]): The dimensions to reduce. Only constant value is allowed. + Default: (), reduce all dimensions. + keep_dims (bool): If true, keep these reduced dimensions and the length is 1. + If false, don't keep these dimensions. Default: False. + dtype (Union[Number, mstype.bool_]): The data type of the output tensor. Only constant value is allowed. + Default: mstype.int32 Returns: Tensor, number of nonzero element. The data type is dtype. Examples: - >>> input_tensor = Tensor(np.array([[0, 1, 0], [1, 1, 0]]).astype(np.float32)) + >>> input_x = Tensor(np.array([[0, 1, 0], [1, 1, 0]]).astype(np.float32)) >>> nonzero_num = count_nonzero(x=input_x, axis=[0, 1], keep_dims=True, dtype=mstype.int32) - nonzero_num: [[3]] + >>> print(nonzero_num) + [[3]] """ const_utils.check_valid_type(F.dtype(x), mstype.number_type, 'input x')