diff --git a/mindspore/lite/java/java/app/src/main/native/runtime/model.cpp b/mindspore/lite/java/java/app/src/main/native/runtime/model.cpp index e1dce79fa5..250a047a4a 100644 --- a/mindspore/lite/java/java/app/src/main/native/runtime/model.cpp +++ b/mindspore/lite/java/java/app/src/main/native/runtime/model.cpp @@ -31,7 +31,6 @@ extern "C" JNIEXPORT jlong JNICALL Java_com_mindspore_lite_Model_loadModel(JNIEn MS_LOGD("Start Loading model"); auto model = mindspore::lite::Model::Import(model_buffer, buffer_len); - // env->DeleteLocalRef(*(jobject *)model_buffer); if (model == nullptr) { MS_LOGE("Import model failed"); return reinterpret_cast(nullptr); diff --git a/mindspore/lite/nnacl/fp32_grad/gemm.c b/mindspore/lite/nnacl/fp32_grad/gemm.c index 8cfc9e2818..4791ef04ba 100644 --- a/mindspore/lite/nnacl/fp32_grad/gemm.c +++ b/mindspore/lite/nnacl/fp32_grad/gemm.c @@ -77,7 +77,6 @@ static void gemm_tt(int M, int N, int K, float alpha, float *mat_a, int lda, flo void gemm(int transpose_a, int transpose_b, int M, int N, int K, float alpha, float *mat_a, int lda, float *mat_b, int ldb, float beta, float *mat_c, int ldc) { - // printf("cpu: %d %d %d %d %d %f %d %d %f %d\n",TA, TB, M, N, K, ALPHA, lda, ldb, BETA, ldc); if (beta >= 0.f && beta <= 0.f) { for (int i = 0; i < M; ++i) { for (int j = 0; j < N; ++j) { diff --git a/mindspore/lite/nnacl/fp32_grad/pooling_grad.c b/mindspore/lite/nnacl/fp32_grad/pooling_grad.c index d841f02967..a2a2001288 100644 --- a/mindspore/lite/nnacl/fp32_grad/pooling_grad.c +++ b/mindspore/lite/nnacl/fp32_grad/pooling_grad.c @@ -33,15 +33,9 @@ void AvgPoolingGrad(const float *input_ptr, float *output_ptr, PoolingParameter const float *inPtr = NULL; for (int i = 0; i < output_h * output_w * channel * output_batch; i++) output_ptr[i] = 0.0; - // int pad_top = padding[2]; - float kk = (float)(win_h * win_w); for (uint16_t ib = 0; ib < output_batch; ib++) { - // int in_batch_offset = batch * in_h * in_w * channel; - // int out_batch_offset = batch * output_h * output_w * channel; - // out = grads->getData(ib*grads->imgSize()); - // inPtr = in->getData(ib*in->imgSize()); float *out; out = &output_ptr[(ib * output_h * output_w)]; inPtr = (float *)(&input_ptr[(ib * in_h * in_w)]); @@ -97,12 +91,6 @@ void AvgPoolingGrad(const float *input_ptr, float *output_ptr, PoolingParameter } void MaxPoolingGrad(const float *dy, const int *indices, float *output_ptr, PoolingParameter *pooling_param) { - // int stride_w = pooling_param->stride_w_; - // int stride_h = pooling_param->stride_h_; - // int pad_w = pooling_param->pad_l_; - // int pad_h = pooling_param->pad_u_; - // int win_w = pooling_param->window_w_; - // int win_h = pooling_param->window_h_; int channel = pooling_param->input_channel_; int in_w = pooling_param->input_w_; int in_h = pooling_param->input_h_; diff --git a/mindspore/lite/nnacl/quantization/quantize.h b/mindspore/lite/nnacl/quantization/quantize.h index 71a9691c87..163480b8b4 100644 --- a/mindspore/lite/nnacl/quantization/quantize.h +++ b/mindspore/lite/nnacl/quantization/quantize.h @@ -99,22 +99,6 @@ typedef struct PreluQuantArg { QuantArg out_quant_args_; } PreluQuantArg; -/*typedef struct SigmoidQuantArg { - int *input_sizes_; - int output_size_; - int **input_shapes_; - int *output_shape_; - size_t input_num_; - size_t output_dim_; - float alpha_; - QuantArg in_args_; - QuantArg out_args_; - int output_activation_min_; - int output_activation_max_; - QuantArg *in_quant_args_; - QuantArg out_quant_args_; -} SigmoidQuantArg;*/ - typedef struct MatmulQuantArg { QuantArg input; QuantArg weight; diff --git a/mindspore/lite/nnacl/sparse_to_dense.h b/mindspore/lite/nnacl/sparse_to_dense.h index 2047aa6fcf..aa2205c8e1 100644 --- a/mindspore/lite/nnacl/sparse_to_dense.h +++ b/mindspore/lite/nnacl/sparse_to_dense.h @@ -20,6 +20,7 @@ typedef struct SparseToDenseParameter { OpParameter op_parameter_; + bool validate_indices_; int thread_num_; int count_; } SparseToDenseParameter; diff --git a/mindspore/lite/schema/ops.fbs b/mindspore/lite/schema/ops.fbs index be3504e2a7..1519d0a80f 100644 --- a/mindspore/lite/schema/ops.fbs +++ b/mindspore/lite/schema/ops.fbs @@ -703,16 +703,12 @@ table SpaceToBatch { } table SparseToDense { - outputShape: [int]; - sparseValue: [int]; - defaultValue: [int]; validateIndices: bool; } table ReverseSequence { seqAxis: int; batchAxis: int; - seqLengths: [int]; } table Rank { @@ -904,4 +900,4 @@ table Proposal { table Custom { custom : [ubyte]; -} \ No newline at end of file +} diff --git a/mindspore/lite/src/common/file_utils.cc b/mindspore/lite/src/common/file_utils.cc index 0677bfcc85..c703c2288e 100644 --- a/mindspore/lite/src/common/file_utils.cc +++ b/mindspore/lite/src/common/file_utils.cc @@ -125,45 +125,5 @@ void CompareOutput(float *output_data, std::string file_path) { printf("output num : %zu\n", output_num); CompareOutputData(output_data, ground_truth, output_num); } - -// std::string GetAndroidPackageName() { -// static std::string packageName; -// -// if (!packageName.empty()) { -// return packageName; -// } -// -// char cmdline[MAX_FILENAME_LEN] = {0}; -// int fd = open("/proc/self/cmdline", O_RDONLY); -// -// if (fd >= 0) { -// char ch; -// int i = 0; -// while (read(fd, &ch, sizeof(ch)) > 0 && !isspace(ch)) { -// if (':' == ch) { -// break; -// } -// -// if (('/' == ch) || ('\\' == ch)) { -// (void)memset(cmdline, 0, sizeof(cmdline)); -// i = 0; -// } else { -// cmdline[i] = ch; -// i++; -// } -// } -// close(fd); -// } -// packageName = std::string(cmdline); -// return packageName; -//} - -// std::string GetAndroidPackagePath() { -// std::string packageName = GetAndroidPackageName(); -// if (packageName.empty()) { -// return "./"; -// } -// return "/data/data/" + packageName + '/'; -//} } // namespace lite } // namespace mindspore diff --git a/mindspore/lite/src/ops/reverse_sequence.cc b/mindspore/lite/src/ops/reverse_sequence.cc index c89477832c..01155b69b2 100644 --- a/mindspore/lite/src/ops/reverse_sequence.cc +++ b/mindspore/lite/src/ops/reverse_sequence.cc @@ -21,26 +21,16 @@ namespace lite { #ifdef PRIMITIVE_WRITEABLE int ReverseSequence::GetSeqAxis() const { return this->primitive_->value.AsReverseSequence()->seqAxis; } int ReverseSequence::GetBatchAxis() const { return this->primitive_->value.AsReverseSequence()->batchAxis; } -std::vector ReverseSequence::GetSeqLengths() const { - return this->primitive_->value.AsReverseSequence()->seqLengths; -} void ReverseSequence::SetSeqAxis(int seq_axis) { this->primitive_->value.AsReverseSequence()->seqAxis = seq_axis; } void ReverseSequence::SetBatchAxis(int batch_axis) { this->primitive_->value.AsReverseSequence()->batchAxis = batch_axis; } -void ReverseSequence::SetSeqLengths(const std::vector &seq_lengths) { - this->primitive_->value.AsReverseSequence()->seqLengths = seq_lengths; -} #else int ReverseSequence::GetSeqAxis() const { return this->primitive_->value_as_ReverseSequence()->seqAxis(); } int ReverseSequence::GetBatchAxis() const { return this->primitive_->value_as_ReverseSequence()->batchAxis(); } -std::vector ReverseSequence::GetSeqLengths() const { - auto fb_vector = this->primitive_->value_as_ReverseSequence()->seqLengths(); - return std::vector(fb_vector->begin(), fb_vector->end()); -} int ReverseSequence::UnPackToFlatBuilder(const schema::Primitive *primitive, flatbuffers::FlatBufferBuilder *fbb) { MS_ASSERT(nullptr != primitive); MS_ASSERT(nullptr != fbb); @@ -50,13 +40,7 @@ int ReverseSequence::UnPackToFlatBuilder(const schema::Primitive *primitive, fla MS_LOG(ERROR) << "value_as_ReverseSequence return nullptr"; return RET_ERROR; } - std::vector seqLengths; - if (attr->seqLengths() != nullptr) { - for (int i = 0; i < static_cast(attr->seqLengths()->size()); i++) { - seqLengths.push_back(attr->seqLengths()->data()[i]); - } - } - auto val_offset = schema::CreateReverseSequenceDirect(*fbb, attr->seqAxis(), attr->batchAxis(), &seqLengths); + auto val_offset = schema::CreateReverseSequence(*fbb, attr->seqAxis(), attr->batchAxis()); auto prim_offset = schema::CreatePrimitive(*fbb, schema::PrimitiveType_ReverseSequence, val_offset.o); fbb->Finish(prim_offset); return RET_OK; diff --git a/mindspore/lite/src/ops/reverse_sequence.h b/mindspore/lite/src/ops/reverse_sequence.h index 6b0c59d384..a51be8e644 100644 --- a/mindspore/lite/src/ops/reverse_sequence.h +++ b/mindspore/lite/src/ops/reverse_sequence.h @@ -34,7 +34,6 @@ class ReverseSequence : public PrimitiveC { explicit ReverseSequence(schema::PrimitiveT *primitive) : PrimitiveC(primitive) {} void SetSeqAxis(int seq_axis); void SetBatchAxis(int batch_axis); - void SetSeqLengths(const std::vector &seq_lengths); #else ReverseSequence() = default; @@ -43,7 +42,6 @@ class ReverseSequence : public PrimitiveC { int InferShape(std::vector inputs_, std::vector outputs_) override; int GetSeqAxis() const; int GetBatchAxis() const; - std::vector GetSeqLengths() const; }; } // namespace lite } // namespace mindspore diff --git a/mindspore/lite/src/ops/sparse_to_dense.cc b/mindspore/lite/src/ops/sparse_to_dense.cc index c59ce46473..130b148aea 100644 --- a/mindspore/lite/src/ops/sparse_to_dense.cc +++ b/mindspore/lite/src/ops/sparse_to_dense.cc @@ -19,44 +19,14 @@ namespace mindspore { namespace lite { #ifdef PRIMITIVE_WRITEABLE -std::vector SparseToDense::GetOutputShape() const { - return this->primitive_->value.AsSparseToDense()->outputShape; -} -std::vector SparseToDense::GetSparseValue() const { - return this->primitive_->value.AsSparseToDense()->sparseValue; -} -std::vector SparseToDense::GetDefaultValue() const { - return this->primitive_->value.AsSparseToDense()->defaultValue; -} bool SparseToDense::GetValidateIndices() const { return this->primitive_->value.AsSparseToDense()->validateIndices; } -void SparseToDense::SetOutputShape(const std::vector &output_shape) { - this->primitive_->value.AsSparseToDense()->outputShape = output_shape; -} -void SparseToDense::SetSparseValue(const std::vector &sparse_value) { - this->primitive_->value.AsSparseToDense()->sparseValue = sparse_value; -} -void SparseToDense::SetDefaultValue(const std::vector &default_value) { - this->primitive_->value.AsSparseToDense()->defaultValue = default_value; -} void SparseToDense::SetValidateIndices(bool validate_indices) { this->primitive_->value.AsSparseToDense()->validateIndices = validate_indices; } #else -std::vector SparseToDense::GetOutputShape() const { - auto fb_vector = this->primitive_->value_as_SparseToDense()->outputShape(); - return std::vector(fb_vector->begin(), fb_vector->end()); -} -std::vector SparseToDense::GetSparseValue() const { - auto fb_vector = this->primitive_->value_as_SparseToDense()->sparseValue(); - return std::vector(fb_vector->begin(), fb_vector->end()); -} -std::vector SparseToDense::GetDefaultValue() const { - auto fb_vector = this->primitive_->value_as_SparseToDense()->defaultValue(); - return std::vector(fb_vector->begin(), fb_vector->end()); -} bool SparseToDense::GetValidateIndices() const { return this->primitive_->value_as_SparseToDense()->validateIndices(); } int SparseToDense::UnPackToFlatBuilder(const schema::Primitive *primitive, flatbuffers::FlatBufferBuilder *fbb) { MS_ASSERT(nullptr != primitive); @@ -66,25 +36,7 @@ int SparseToDense::UnPackToFlatBuilder(const schema::Primitive *primitive, flatb MS_LOG(ERROR) << "value_as_SparseToDense return nullptr"; return RET_ERROR; } - std::vector outputShape; - if (attr->outputShape() != nullptr) { - for (int i = 0; i < static_cast(attr->outputShape()->size()); i++) { - outputShape.push_back(attr->outputShape()->data()[i]); - } - } - std::vector sparseValue; - if (attr->sparseValue() != nullptr) { - for (int i = 0; i < static_cast(attr->sparseValue()->size()); i++) { - sparseValue.push_back(attr->sparseValue()->data()[i]); - } - } - std::vector defaultValue; - if (attr->defaultValue() != nullptr) { - for (int i = 0; i < static_cast(attr->defaultValue()->size()); i++) { - defaultValue.push_back(attr->defaultValue()->data()[i]); - } - } - auto val_offset = schema::CreateSparseToDenseDirect(*fbb, &outputShape, &sparseValue, &defaultValue); + auto val_offset = schema::CreateSparseToDense(*fbb, attr->validateIndices()); auto prim_offset = schema::CreatePrimitive(*fbb, schema::PrimitiveType_SparseToDense, val_offset.o); fbb->Finish(prim_offset); return RET_OK; diff --git a/mindspore/lite/src/populate_parameter.cc b/mindspore/lite/src/populate_parameter.cc index 35897a9509..d25bd4bfd6 100644 --- a/mindspore/lite/src/populate_parameter.cc +++ b/mindspore/lite/src/populate_parameter.cc @@ -1031,6 +1031,8 @@ OpParameter *PopulateSparseToDenseParameter(const mindspore::lite::PrimitiveC *p } memset(sparse_to_dense_param, 0, sizeof(SparseToDenseParameter)); sparse_to_dense_param->op_parameter_.type_ = primitive->Type(); + auto param = reinterpret_cast(const_cast(primitive)); + sparse_to_dense_param->validate_indices_ = param->GetValidateIndices(); return reinterpret_cast(sparse_to_dense_param); } diff --git a/mindspore/lite/src/runtime/kernel/arm/base/convolution_base.cc b/mindspore/lite/src/runtime/kernel/arm/base/convolution_base.cc index fbf45c4e64..88a1ac4818 100644 --- a/mindspore/lite/src/runtime/kernel/arm/base/convolution_base.cc +++ b/mindspore/lite/src/runtime/kernel/arm/base/convolution_base.cc @@ -250,11 +250,6 @@ int ConvolutionBaseCPUKernel::SetOutputTensorQuantParam() { } else { MS_LOG(ERROR) << "Not Support Per Channel for input now."; return RET_ERROR; - // auto output_quant_arg = output_tensor->GetQuantParams(); - // for (int i = 0; i < out_arg_num; ++i) { - // conv_quant_arg_->output_quant_args_[i].zp_ = output_quant_arg[i].zeroPoint; - // conv_quant_arg_->output_quant_args_[i].scale_ = output_quant_arg[i].scale; - // } } return RET_OK; } diff --git a/mindspore/lite/src/runtime/kernel/arm/fp16/convolution_fp16.cc b/mindspore/lite/src/runtime/kernel/arm/fp16/convolution_fp16.cc index e229074f67..0b2ce749a2 100644 --- a/mindspore/lite/src/runtime/kernel/arm/fp16/convolution_fp16.cc +++ b/mindspore/lite/src/runtime/kernel/arm/fp16/convolution_fp16.cc @@ -230,10 +230,6 @@ kernel::LiteKernel *CpuConvFp16KernelCreator(const std::vectorinput_w_ = inputs.front()->Width(); conv_param->output_h_ = outputs.front()->Height(); conv_param->output_w_ = outputs.front()->Width(); - // bool prefer_flag = false; - // if (conv_param->output_h_ * conv_param->output_w_ > 64) { - // prefer_flag = true; - // } kernel::LiteKernel *kernel = nullptr; if (kernel_h == 3 && kernel_w == 3 && stride_h == 1 && stride_w == 1 && dilation_h == 1 && dilation_w == 1) { diff --git a/mindspore/lite/src/runtime/kernel/arm/fp32/convolution.cc b/mindspore/lite/src/runtime/kernel/arm/fp32/convolution.cc index 3375a12252..a9c4705619 100644 --- a/mindspore/lite/src/runtime/kernel/arm/fp32/convolution.cc +++ b/mindspore/lite/src/runtime/kernel/arm/fp32/convolution.cc @@ -45,13 +45,8 @@ int ConvolutionCPUKernel::InitWeightBias() { int ic4 = UP_DIV(in_channel, C4NUM); int kernel_plane = kernel_h * kernel_w; int oc_block, oc_block_num; - // #ifdef ENABLE_ARM32 - // oc_block = C4NUM; - // oc_block_num = UP_DIV(out_channel, C4NUM); - // #else oc_block = C8NUM; oc_block_num = UP_DIV(out_channel, C8NUM); - // #endif int pack_weight_size = oc_block_num * oc_block * ic4 * C4NUM * kernel_plane; auto origin_weight = reinterpret_cast(filter_tensor->Data()); diff --git a/mindspore/lite/src/runtime/kernel/arm/fp32/convolution_3x3.cc b/mindspore/lite/src/runtime/kernel/arm/fp32/convolution_3x3.cc index a17a0853b0..5d456fe501 100644 --- a/mindspore/lite/src/runtime/kernel/arm/fp32/convolution_3x3.cc +++ b/mindspore/lite/src/runtime/kernel/arm/fp32/convolution_3x3.cc @@ -57,13 +57,8 @@ int Convolution3x3CPUKernel::InitWeightBias() { int iC4 = UP_DIV(input_channel, C4NUM); int oC4 = UP_DIV(output_channel, C4NUM); int oc_block, oc_block_num; - // #ifdef ENABLE_ARM32 - // oc_block = C4NUM; - // oc_block_num = UP_DIV(output_channel, C4NUM); - // #else oc_block = C8NUM; oc_block_num = UP_DIV(output_channel, C8NUM); - // #endif const int k_plane = 16; // init weight size_t transformed_size = iC4 * C4NUM * oc_block_num * oc_block * k_plane * sizeof(float); diff --git a/mindspore/lite/src/runtime/kernel/arm/fp32/convolution_winograd.cc b/mindspore/lite/src/runtime/kernel/arm/fp32/convolution_winograd.cc index 40dcf4dd4b..e9ea6d40d1 100644 --- a/mindspore/lite/src/runtime/kernel/arm/fp32/convolution_winograd.cc +++ b/mindspore/lite/src/runtime/kernel/arm/fp32/convolution_winograd.cc @@ -115,13 +115,8 @@ int ConvolutionWinogradCPUKernel::InitWeightBias() { int oc4 = UP_DIV(out_channel, C4NUM); int oc_block, oc_block_num; - // #ifdef ENABLE_ARM32 - // oc_block = C4NUM; - // oc_block_num = UP_DIV(output_channel, C4NUM); - // #else oc_block = C8NUM; oc_block_num = UP_DIV(out_channel, C8NUM); - // #endif // init weight auto ret = MallocFilterMatrix(oc_block, oc_block_num); diff --git a/mindspore/lite/src/runtime/kernel/arm/fp32_grad/arithmetic_grad.cc b/mindspore/lite/src/runtime/kernel/arm/fp32_grad/arithmetic_grad.cc index 24e5a253d6..6e1cc3c696 100644 --- a/mindspore/lite/src/runtime/kernel/arm/fp32_grad/arithmetic_grad.cc +++ b/mindspore/lite/src/runtime/kernel/arm/fp32_grad/arithmetic_grad.cc @@ -146,7 +146,6 @@ int ArithmeticGradCPUKernel::InferShape() { dx1->set_shape(x1->shape()); dx2->set_shape(x2->shape()); - // outTensor->set_shape(out_shape); dx1->set_data_type(dy->data_type()); dx2->set_data_type(dy->data_type()); return RET_OK; @@ -261,7 +260,6 @@ int ArithmeticGradCPUKernel::ReSize() { return RET_OK; } int ArithmeticGradCPUKernel::Run() { auto dy = reinterpret_cast(inputs_[0]->Data()); - // auto input1_data1 = reinterpret_cast(inputs_[1]->Data()); auto dx1 = reinterpret_cast(outputs_[0]->Data()); auto dx2 = reinterpret_cast(outputs_[1]->Data()); diff --git a/mindspore/lite/src/runtime/kernel/arm/fp32_grad/bias_grad.cc b/mindspore/lite/src/runtime/kernel/arm/fp32_grad/bias_grad.cc index e02ee48391..4f4537598e 100644 --- a/mindspore/lite/src/runtime/kernel/arm/fp32_grad/bias_grad.cc +++ b/mindspore/lite/src/runtime/kernel/arm/fp32_grad/bias_grad.cc @@ -77,7 +77,6 @@ int BiasGradCPUKernel::Run() { } auto in = reinterpret_cast(inputs_.at(0)->Data()); auto out = reinterpret_cast(outputs_.at(0)->Data()); - // size_t data_size = inputs_.at(0)->ElementsNum(); size_t nhw_size = 1; size_t channels = bias_param->in_shape0_[bias_param->ndim_ - 1]; // C in NHWC diff --git a/mindspore/lite/src/runtime/kernel/arm/fp32_grad/bn_grad.cc b/mindspore/lite/src/runtime/kernel/arm/fp32_grad/bn_grad.cc index 06749be478..62cff244dd 100644 --- a/mindspore/lite/src/runtime/kernel/arm/fp32_grad/bn_grad.cc +++ b/mindspore/lite/src/runtime/kernel/arm/fp32_grad/bn_grad.cc @@ -48,7 +48,6 @@ int BNGradInputCPUKernel::Init() { return RET_ERROR; } auto *input_tensor = inputs_.at(0); - // auto *weight_tensor = inputs_.at(1); auto *out_tensor = outputs_.at(0); auto in_shape = input_tensor->shape(); out_tensor->set_shape(in_shape); @@ -59,12 +58,10 @@ int BNGradInputCPUKernel::Init() { int BNGradInputCPUKernel::ReSize() { return RET_OK; } int BNGradInputCPUKernel::Run() { - // std::cout << "run succ" << std::endl; auto *input_x = inputs_.at(0); auto *input_yt = inputs_.at(1); auto *input_scale = inputs_.at(2); auto *output_grad = outputs_.at(0); - // Tensor *bias = input[5]; auto bn_param = reinterpret_cast(opParameter); int batch = bn_param->batch; int channels = bn_param->channels; @@ -100,8 +97,6 @@ kernel::LiteKernel *CpuBNGradInputFp32KernelCreator(const std::vectorname = opDef.name()->str().data(); - // parameter->type = opDef.attr_type(); auto *kernel = new (std::nothrow) BNGradInputCPUKernel(opParameter, inputs, outputs, ctx, primitive); if (kernel == nullptr) { MS_LOG(ERROR) << "new BNGradInputCPUKernel fail!"; diff --git a/mindspore/lite/src/runtime/kernel/arm/fp32_grad/pooling_grad.cc b/mindspore/lite/src/runtime/kernel/arm/fp32_grad/pooling_grad.cc index 6e387cb221..3082b1bc43 100644 --- a/mindspore/lite/src/runtime/kernel/arm/fp32_grad/pooling_grad.cc +++ b/mindspore/lite/src/runtime/kernel/arm/fp32_grad/pooling_grad.cc @@ -28,90 +28,7 @@ using mindspore::lite::RET_OK; using mindspore::schema::PrimitiveType_PoolingGrad; namespace mindspore::kernel { -#if 0 -int PoolingGradCPUKernel::TfPadding(int input_w, int input_h, int &output_w, int &output_h) { - PoolingParameter *pool_param = reinterpret_cast (opParameter); - - auto stride_w = pool_param->stride_w_; - auto stride_h = pool_param->stride_h_; - auto window_w = pool_param->window_w_; - auto window_h = pool_param->window_h_; - auto pad_up = pool_param->pad_u_; - auto pad_down = pool_param->pad_d_; - auto pad_left = pool_param->pad_l_; - auto pad_right = pool_param->pad_r_; - if (pool_param->pad_mode_ == PADMODE_SAME) { - output_w = ceil(input_w / stride_w); - output_h = ceil(input_h / stride_h); - } else { - output_w = ceil((input_w + pad_left + pad_right - window_w + 1) / stride_w); - output_h = ceil((input_h + pad_up + pad_down - window_h + 1) / stride_h); - } - return RET_OK; -} - -int PoolingGradCPUKernel::CaffePadding(int input_w, int input_h, int &output_w, int &output_h) { - PoolingParameter *pool_param = reinterpret_cast (opParameter); - - auto round_mode = pool_param->round_mode_; - auto stride_w = pool_param->stride_w_; - auto stride_h = pool_param->stride_h_; - auto window_w = pool_param->window_w_; - auto window_h = pool_param->window_h_; - auto pad_up = pool_param->pad_u_; - auto pad_down = pool_param->pad_d_; - auto pad_left = pool_param->pad_l_; - auto pad_right = pool_param->pad_r_; - if (round_mode == ROUNDMODE_FLOOR && false) { - output_w = floor((input_w + pad_left + pad_right - window_w) / stride_w + 1); - output_h = floor((input_h + pad_up + pad_down - window_h) / stride_h + 1); - } else if (round_mode == ROUNDMODE_CEIL || true) { - output_w = ceil((input_w + pad_left + pad_right - window_w) / stride_w + 1); - output_h = ceil((input_h + pad_up + pad_down - window_h) / stride_h + 1); - } else { - MS_LOG(ERROR) << "round mode not support."; - } - - if (pad_left > 0 || pad_up > 0) { - if ((output_w - 1) * stride_w >= input_w + pad_left) { - --output_w; - } - if ((output_h - 1) * stride_h >= input_h + pad_up) { - --output_h; - } - } - return RET_OK; -} - -int PoolingGradCPUKernel::OnnxPadding(int input_w, int input_h, int &output_w, int &output_h) { - PoolingParameter *pool_param = reinterpret_cast (opParameter); - - auto round_mode = pool_param->round_mode_; - auto stride_w = pool_param->stride_w_; - auto stride_h = pool_param->stride_h_; - auto window_w = pool_param->window_w_; - auto window_h = pool_param->window_h_; - auto pad_up = pool_param->pad_u_; - auto pad_down = pool_param->pad_d_; - auto pad_left = pool_param->pad_l_; - auto pad_right = pool_param->pad_r_; - if (round_mode == ROUNDMODE_FLOOR) { - output_w = floor((input_w + pad_left + pad_right - window_w) / stride_w + 1); - output_h = floor((input_h + pad_up + pad_down - window_h) / stride_h + 1); - } else if (round_mode == ROUNDMODE_CEIL) { - MS_LOG(ERROR) << "RoundMode_CEIL mode not support."; - } else { - MS_LOG(ERROR) << "OnnxPadding round mode not support."; - } - return RET_OK; -} -#endif - int PoolingGradCPUKernel::Init() { - // InferShape(): - // auto *in_tensor = reinterpret_cast(inputs_.at(0)->Data()); - // auto *x_tensor = reinterpret_cast(inputs_.at(1)->Data()); - PoolingParameter *pool_param = reinterpret_cast(opParameter); auto in_shape = inputs_.at(0)->shape(); @@ -127,30 +44,6 @@ int PoolingGradCPUKernel::Init() { auto *out_tensor = outputs_.front(); auto out_shape = out_tensor->shape(); -#if 0 - int output_w = 0, output_h = 0; - auto fmk_type = pool_param->fmk_type_; - switch (fmk_type) { - case lite::FmkType_TF: - break; - case lite::FmkType_CAFFE: - CaffePadding(input_w, input_h, output_w, output_h); - break; - case lite::FmkType_ONNX: - OnnxPadding(input_w, input_h, output_w, output_h); - break; - case lite::FmkType_MS: - break; - case lite::FmkType_TFLITE: - TfPadding(input_w, input_h, output_w, output_h); - break; - default: - MS_LOG(ERROR) << "Not support this framework."; - } - std::vector out_shape{in_tensor->shape()}; - out_shape.at(1) = output_h; - out_shape.at(2) = output_w; -#endif out_tensor->set_shape(out_shape); out_tensor->set_data_type(inputs_.at(0)->data_type()); return RET_OK; diff --git a/mindspore/lite/src/runtime/kernel/arm/fp32_grad/pooling_grad.h b/mindspore/lite/src/runtime/kernel/arm/fp32_grad/pooling_grad.h index 58c36a0ffb..980aa5f8b9 100644 --- a/mindspore/lite/src/runtime/kernel/arm/fp32_grad/pooling_grad.h +++ b/mindspore/lite/src/runtime/kernel/arm/fp32_grad/pooling_grad.h @@ -35,9 +35,6 @@ class PoolingGradCPUKernel : public LiteKernel { : LiteKernel(parameter, inputs, outputs, ctx, primitive) {} ~PoolingGradCPUKernel() override = default; - // int TfPadding(int input_w, int input_h, int &output_w, int &output_h); - // int CaffePadding(int input_w, int input_h, int &output_w, int &output_h); - // int OnnxPadding(int input_w, int input_h, int &output_w, int &output_h); int Init() override; int ReSize() override; diff --git a/mindspore/lite/src/runtime/kernel/arm/int8/batchnorm_int8.cc b/mindspore/lite/src/runtime/kernel/arm/int8/batchnorm_int8.cc index 846f6f16b4..86ab079f56 100644 --- a/mindspore/lite/src/runtime/kernel/arm/int8/batchnorm_int8.cc +++ b/mindspore/lite/src/runtime/kernel/arm/int8/batchnorm_int8.cc @@ -60,9 +60,6 @@ int BatchnormInt8CPUKernel::InitConstTensor() { return RET_ERROR; } // compute alpha, beta; - // 0. tmp = (S4 * Sqrt(e + S3 * (q3 - Z3))); - // 1. A = S1 / tmp; - // 2. B = Z4 - (A1 * Z1) -((S2 * (q2 - Z2)) / tmp; auto eps = batchnorm_param_->epsilon_; auto zp_in = input->GetQuantParams().front().zeroPoint; auto zp_mean = mean->GetQuantParams().front().zeroPoint; @@ -107,9 +104,6 @@ int BatchnormInt8CPUKernel::InitFusedConstTensor() { return RET_ERROR; } // compute alpha, beta; - // 0. tmp = (S6 * Sqrt(e + S5 * (q5 - Z5))); - // 1. A = S1 * S2 * (q2 - Z2) / tmp; - // 2. B = Z6 - (A1 * Z1) -((S3 * (q3 - Z3)) / S6 - S2 * S4 * (q2 - Z4) * (q4 - z4) / tmp; auto eps = batchnorm_param_->epsilon_; auto zp_in = input->GetQuantParams().front().zeroPoint; auto zp_scale = scale->GetQuantParams().front().zeroPoint; diff --git a/mindspore/lite/src/runtime/opencl/opencl_wrapper.cc b/mindspore/lite/src/runtime/opencl/opencl_wrapper.cc index 67393505db..0ef970afe5 100644 --- a/mindspore/lite/src/runtime/opencl/opencl_wrapper.cc +++ b/mindspore/lite/src/runtime/opencl/opencl_wrapper.cc @@ -168,7 +168,6 @@ bool OpenCLWrapper::LoadLibraryFromPath(const std::string &library_path) { LOAD_OPENCL_FUNCTION_PTR(clCreateImage); #endif #if CL_HPP_TARGET_OPENCL_VERSION >= 200 - // LOAD_OPENCL_FUNCTION_PTR(clGetKernelSubGroupInfoKHR); LOAD_OPENCL_FUNCTION_PTR(clCreateCommandQueueWithProperties); LOAD_OPENCL_FUNCTION_PTR(clGetExtensionFunctionAddress); LOAD_OPENCL_FUNCTION_PTR(clSVMAlloc); @@ -614,17 +613,6 @@ cl_mem clCreateImage(cl_context context, cl_mem_flags flags, const cl_image_form #endif #if CL_HPP_TARGET_OPENCL_VERSION >= 200 -#if 0 -// clGetKernelSubGroupInfoKHR wrapper, use OpenCLWrapper function. -cl_int clGetKernelSubGroupInfoKHR(cl_kernel kernel, cl_device_id device, cl_kernel_sub_group_info param_name, - size_t input_value_size, const void *input_value, size_t param_value_size, - void *param_value, size_t *param_value_size_ret) { - auto func = mindspore::lite::opencl::OpenCLWrapper::GetInstance()->clGetKernelSubGroupInfoKHR; - MS_ASSERT(func != nullptr); - return func(kernel, device, param_name, input_value_size, input_value, param_value_size, param_value, - param_value_size_ret); -} -#endif // clCreateCommandQueueWithProperties wrapper, use OpenCLWrapper function. cl_command_queue clCreateCommandQueueWithProperties(cl_context context, cl_device_id device, diff --git a/mindspore/lite/src/runtime/thread_pool.c b/mindspore/lite/src/runtime/thread_pool.c index 5f134ff702..32c39ee53d 100644 --- a/mindspore/lite/src/runtime/thread_pool.c +++ b/mindspore/lite/src/runtime/thread_pool.c @@ -88,7 +88,6 @@ static atomic_bool thread_pool_is_created[MAX_THREAD_POOL_NUM] = {ATOMIC_VAR_INI ThreadPool *GetInstance(int thread_pool_id) { if (thread_pool_id < 0 || thread_pool_id >= MAX_THREAD_POOL_NUM) { LOG_ERROR("invaid context id: %d", thread_pool_id); - // DestroyThreadPool(thread_pool_id); return NULL; } return &thread_pool_list[thread_pool_id]; @@ -434,7 +433,6 @@ bool PushTaskToQueue(int thread_pool_id, int thread_id, Task *task) { thread->task_list[tail_index] = task; atomic_store_explicit(&thread->tail, next, memory_order_release); atomic_fetch_add_explicit(&thread->task_size, 1, memory_order_relaxed); - // atomic_store_explicit(&thread->task_size, thread->task_size + 1, memory_order_relaxed); sem_post(&thread->sem); return true; } @@ -552,7 +550,6 @@ void ThreadRun(Thread *thread) { } task->func(task->content, thread_id); atomic_fetch_sub_explicit(&thread->task_size, 1, memory_order_relaxed); - // atomic_store_explicit(&thread->task_size, thread->task_size - 1, memory_order_relaxed); spin_count = 0; sem_trywait(&thread->sem); } else { diff --git a/mindspore/lite/test/ut/tools/converter/parser/tflite/tflite_reverse_sequence_parser_test.cc b/mindspore/lite/test/ut/tools/converter/parser/tflite/tflite_reverse_sequence_parser_test.cc index ba5b7c5220..397dd3c93c 100644 --- a/mindspore/lite/test/ut/tools/converter/parser/tflite/tflite_reverse_sequence_parser_test.cc +++ b/mindspore/lite/test/ut/tools/converter/parser/tflite/tflite_reverse_sequence_parser_test.cc @@ -39,7 +39,5 @@ TEST_F(TestTfliteParserReverseSequence, AttrValue) { auto val = meta_graph->nodes.front()->primitive->value.AsReverseSequence(); ASSERT_EQ(val->seqAxis, 1); ASSERT_EQ(val->seqAxis, 1); - std::vector seq_length = {7, 2, 3, 5}; - ASSERT_EQ(val->seqLengths, seq_length); } } // namespace mindspore diff --git a/mindspore/lite/test/ut/tools/converter/parser/tflite/tflite_sparse_to_dense_parser_test.cc b/mindspore/lite/test/ut/tools/converter/parser/tflite/tflite_sparse_to_dense_parser_test.cc index c6b7fc1c1d..495087a99a 100644 --- a/mindspore/lite/test/ut/tools/converter/parser/tflite/tflite_sparse_to_dense_parser_test.cc +++ b/mindspore/lite/test/ut/tools/converter/parser/tflite/tflite_sparse_to_dense_parser_test.cc @@ -37,12 +37,6 @@ TEST_F(TestTfliteParserSparseToDense, OpType) { TEST_F(TestTfliteParserSparseToDense, AttrValue) { ASSERT_NE(meta_graph->nodes.front()->primitive->value.AsSparseToDense(), nullptr); auto val = meta_graph->nodes.front()->primitive->value.AsSparseToDense(); - std::vector outputShape = {5, 5}; - ASSERT_EQ(val->outputShape, outputShape); - std::vector sparseValue = {1}; - ASSERT_EQ(val->sparseValue, sparseValue); - std::vector defaultValue = {0}; - ASSERT_EQ(val->defaultValue, defaultValue); ASSERT_EQ(val->validateIndices, false); } } // namespace mindspore diff --git a/mindspore/lite/tools/anf_importer/anf_importer.cc b/mindspore/lite/tools/anf_importer/anf_importer.cc index e51c160854..57122aaf4c 100644 --- a/mindspore/lite/tools/anf_importer/anf_importer.cc +++ b/mindspore/lite/tools/anf_importer/anf_importer.cc @@ -22,134 +22,6 @@ #include "schema/inner/model_generated.h" namespace mindspore { namespace lite { -#if 0 -PrimitivePtr SetConv2DAttr(const schema::CNode *cNode) { - MS_EXCEPTION_IF_NULL(cNode); - auto attrs = cNode->primitive()->value_as_Conv2D(); - PrimitivePtr prim; - if (attrs->group() > 1) { - prim = std::make_shared("DepthwiseConv2D"); - prim->set_instance_name("DepthwiseConv2D"); - } else { - prim = std::make_shared("Conv2D"); - prim->set_instance_name("Conv2D"); - } - - prim->set_attr("group", MakeValue(attrs->group())); - prim->set_attr("format", MakeValue(attrs->format())); - prim->set_attr("pad_mode", MakeValue(attrs->padMode())); - std::vector pad_list = {attrs->padUp(), attrs->padDown(), attrs->padLeft(), attrs->padRight()}; - prim->set_attr("pad_list", MakeValue>(pad_list)); - std::vector dilate = {attrs->dilateH(), attrs->dilateW()}; - prim->set_attr("dilation", MakeValue>(dilate)); - std::vector kernel_size = {attrs->kernelH(), attrs->kernelW()}; - prim->set_attr("kernel_size", MakeValue>(kernel_size)); - std::vector stride = {1, 1, attrs->strideH(), attrs->strideW()}; - prim->set_attr("stride", MakeValue>(stride)); - prim->set_attr("out_channel", MakeValue(attrs->channelOut())); - prim->set_attr("group", MakeValue(attrs->group())); - return prim; -} - -PrimitivePtr SetActivationAttr(const schema::CNode *cNode) { - MS_EXCEPTION_IF_NULL(cNode); - auto attrs = cNode->primitive()->value_as_Activation(); - PrimitivePtr prim; - if (attrs->type() == schema::ActivationType_RELU) { - prim = std::make_shared("ReLU"); - prim->set_instance_name("ReLU"); - } - return prim; -} - -PrimitivePtr SetPoolingAttr(const schema::CNode *cNode) { - MS_EXCEPTION_IF_NULL(cNode); - auto attrs = cNode->primitive()->value_as_Pooling(); - PrimitivePtr prim; - if (attrs->poolingMode() == schema::PoolMode_MAX_POOLING) { - prim = std::make_shared("MaxPool"); - prim->set_instance_name("MaxPool"); - } else if (attrs->poolingMode() == schema::PoolMode_MEAN_POOLING) { - prim = std::make_shared("MeanPool"); - prim->set_instance_name("MeanPool"); - } - - prim->set_attr("format", MakeValue(attrs->format())); - prim->set_attr("pad_mode", MakeValue(attrs->padMode())); - prim->set_attr("ksize", MakeValue>(std::vector({1, 1, attrs->windowH(), attrs->windowW()}))); - prim->set_attr("strides", MakeValue>(std::vector({1, 1, attrs->strideH(), attrs->strideW()}))); - return prim; -} - -PrimitivePtr SetFlattenAttr(const schema::CNode *cNode) { - MS_EXCEPTION_IF_NULL(cNode); - auto prim = std::make_shared("Flatten"); - prim->set_instance_name("Flatten"); - return prim; -} - -PrimitivePtr SetMatmulAttr(const schema::CNode *cNode) { - MS_EXCEPTION_IF_NULL(cNode); - auto attrs = cNode->primitive()->value_as_MatMul(); - auto prim = std::make_shared("Matmul"); - prim->set_instance_name("Matmul"); - prim->set_attr("transpose_a", MakeValue(attrs->transposeA())); - prim->set_attr("transpose_b", MakeValue(attrs->transposeB())); - return prim; -} - -PrimitivePtr SetMulAttr(const schema::CNode *cNode) { - MS_EXCEPTION_IF_NULL(cNode); - // auto attrs = nodedef->attr_as_Mul(); - auto prim = std::make_shared("Mul"); - prim->set_instance_name("Mul"); - return prim; -} - -PrimitivePtr SetSigmoidAttr(const schema::CNode *cNode) { - MS_EXCEPTION_IF_NULL(cNode); - auto prim = std::make_shared("Sigmoid"); - prim->set_instance_name("Sigmoid"); - return prim; -} - -PrimitivePtr SetReduceAttr(const schema::CNode *cNode) { - MS_EXCEPTION_IF_NULL(cNode); - auto prim = std::make_shared("ReduceMean"); - prim->set_instance_name("ReduceMean"); - return prim; -} - -PrimitivePtr SetBatchNormAttr(const schema::CNode *cNode) { - MS_EXCEPTION_IF_NULL(cNode); - auto attrs = cNode->primitive_as_BatchNorm(); - auto prim = std::make_shared("BatchNorm"); - prim->set_attr("is_training", MakeValue(attrs->is_training())); - prim->set_instance_name("BatchNorm"); - return prim; -} - -PrimitivePtr SetBiasAddAttr(const schema::CNode *cNode) { - MS_EXCEPTION_IF_NULL(cNode); - auto prim = std::make_shared("BiasAdd"); - prim->set_instance_name("BiasAdd"); - return prim; -} - -PrimitivePtr SetAddAttr(const schema::CNode *cNode) { - MS_EXCEPTION_IF_NULL(cNode); - auto prim = std::make_shared("Add"); - prim->set_instance_name("Add"); - return prim; -} - -void MinnieBuildGraph::FbTest(const GraphDef *graph_def) { - auto node_def = graph_def->subgraphs()->begin()->nodes()->GetAs(3); - PrimitivePtr prim = ConverterOperatorAttr(node_def); - if (prim->GetAttr("format")) MS_LOG(INFO) << "find format"; - if (prim->GetAttr("group")) MS_LOG(INFO) << "find group"; -} -#endif int AnfImporter::Import(const schema::QuantType &quantType) { auto ret = ConverterConstTensor(); diff --git a/mindspore/lite/tools/anf_importer/import_from_meta_graphT.cc b/mindspore/lite/tools/anf_importer/import_from_meta_graphT.cc index 40c3876f87..4f72dbb3b5 100644 --- a/mindspore/lite/tools/anf_importer/import_from_meta_graphT.cc +++ b/mindspore/lite/tools/anf_importer/import_from_meta_graphT.cc @@ -60,17 +60,6 @@ int AnfImporterFromMetaGraphT::ConverterConstTensor() { param_value->set_tensor_addr(tensor_data); param_value->set_tensor_size(size); } - // if (!tensor->quantParams.empty()) { - // std::unique_ptr quantParam = std::make_unique(); - // quantParam->scale = tensor->quantParams[0]->scale; - // quantParam->zeroPoint = tensor->quantParams[0]->zeroPoint; - // quantParam->min = tensor->quantParams[0]->min; - // quantParam->max = tensor->quantParams[0]->max; - // quantParam->narrowRange = tensor->quantParams[0]->narrowRange; - // quantParam->numBits = tensor->quantParams[0]->numBits; - // quantParam->inited = tensor->quantParams[0]->inited; - // param_value->set_quant_param(quantParam); - // } parameter->set_default_param(param_value); AddNode(i, parameter); } diff --git a/mindspore/lite/tools/anf_importer/import_from_protobuf.h b/mindspore/lite/tools/anf_importer/import_from_protobuf.h index 446f8a5be5..718f721fb0 100644 --- a/mindspore/lite/tools/anf_importer/import_from_protobuf.h +++ b/mindspore/lite/tools/anf_importer/import_from_protobuf.h @@ -48,37 +48,6 @@ class AnfImporterFromProtobuf : public AnfImporter { bool ParseModelConfigureInfo(const onnx::ModelProto &model_proto); bool BuildFuncGraph(const FuncGraphPtr &outputFuncGraph, const onnx::GraphProto &importProto, const schema::QuantType &quantType); -#if 0 - bool ImportParametersForGraph(const FuncGraphPtr &outputFuncGraph, - const onnx::GraphProto &importProto); - bool ImportNodesForGraph(const FuncGraphPtr &outputFuncGraph, - const onnx::GraphProto &importProto); - bool BuildParameterForFuncGraph(const ParameterPtr &node, - const onnx::ValueInfoProto &value_proto); - CNodePtr BuildCNodeForFuncGraph(const FuncGraphPtr &outputFuncGraph, - const onnx::NodeProto &node_proto); - bool BuildReturnForFuncGraph(const FuncGraphPtr &outputFuncGraph, - const onnx::GraphProto &importProto, - const CNodePtr &cnode_ptr); - bool GetAttrValueForCNode(const PrimitivePtr &prim, - const onnx::AttributeProto &attr_proto); - bool ObtainCNodeAttrInTypeForm(const PrimitivePtr &prim, - const std::string &attr_name, - const onnx::TensorProto &attr_tensor); - ValuePtr ObtainCNodeAttrInScalarForm(const onnx::TensorProto &attr_tensor); - bool ObtainCNodeAttrInTensorForm(const PrimitivePtr &prim, - const std::string &attr_name, - const onnx::TensorProto &attr_tensor); - bool BuildValueNodeForFuncGraph(const onnx::NodeProto &node_proto); - bool ObtainValueNodeInTensorForm(const std::string &value_node_name, - const onnx::TensorProto &attr_tensor); - bool GetAttrValueForValueNode(const std::string &value_node_name, - const onnx::AttributeProto &attr_tensor); - bool ObtainValueNodeInTypeForm(const std::string &value_node_name, - const onnx::TensorProto &attr_tensor); - std::unordered_map - GetAbstractForCNode(const onnx::AttributeProto &attr_proto); -#else bool ImportParametersForGraph(const FuncGraphPtr &outputFuncGraph, const onnx::GraphProto &importProto); bool ImportNodesForGraph(const FuncGraphPtr &outputFuncGraph, const onnx::GraphProto &importProto, const schema::QuantType &quantType); @@ -103,8 +72,6 @@ class AnfImporterFromProtobuf : public AnfImporter { bool ObtainValueNodeInTypeForm(const string &value_node_name, const onnx::TensorProto &attr_tensor); abstract::AbstractTensorPtr GetAbstractForCNode(const onnx::AttributeProto &attr_proto); -#endif - private: std::string producer_name_; int model_version_{}; diff --git a/mindspore/lite/tools/converter/parser/tflite/tflite_reverse_sequence_parser.cc b/mindspore/lite/tools/converter/parser/tflite/tflite_reverse_sequence_parser.cc index 875e132618..9263e4c5a7 100644 --- a/mindspore/lite/tools/converter/parser/tflite/tflite_reverse_sequence_parser.cc +++ b/mindspore/lite/tools/converter/parser/tflite/tflite_reverse_sequence_parser.cc @@ -54,16 +54,13 @@ STATUS TfliteReverseSequenceParser::Parse(const std::unique_ptrseqAxis = tflite_attr->seq_dim; attr->batchAxis = tflite_attr->batch_dim; - if (GetTfliteData(tflite_op->inputs[1], tflite_tensors, tflite_model_buffer, attr->seqLengths)) { - MS_LOG(ERROR) << "get reverse_sequence -> seqLengths failed"; - return RET_ERROR; - } - op->primitive->value.type = schema::PrimitiveType_ReverseSequence; op->primitive->value.value = attr.release(); AddOpInput(op, tensors_id, tensors_format, tensors_id_map, tflite_op->inputs[0], tensors_id->size(), tflite_tensors.size(), schema::Format_NHWC); + AddOpInput(op, tensors_id, tensors_format, tensors_id_map, + tflite_op->inputs[1], tensors_id->size(), tflite_tensors.size(), schema::Format_NHWC); AddOpOutput(op, tensors_id, tensors_format, tensors_id_map, tflite_op->outputs[0], tensors_id->size(), tflite_tensors.size(), schema::Format_NHWC); return RET_OK; diff --git a/mindspore/lite/tools/converter/parser/tflite/tflite_sparse_to_dense_parser.cc b/mindspore/lite/tools/converter/parser/tflite/tflite_sparse_to_dense_parser.cc index b00950d1d3..02b98c07f3 100644 --- a/mindspore/lite/tools/converter/parser/tflite/tflite_sparse_to_dense_parser.cc +++ b/mindspore/lite/tools/converter/parser/tflite/tflite_sparse_to_dense_parser.cc @@ -47,20 +47,6 @@ STATUS TfliteSparseToDenseParser::Parse(const std::unique_ptr } attr->validateIndices = false; - - if (GetTfliteData(tflite_op->inputs[1], tflite_tensors, tflite_model_buffer, attr->outputShape)) { - MS_LOG(ERROR) << "get sparseToDense -> outputShape failed"; - return RET_ERROR; - } - if (GetTfliteData(tflite_op->inputs[2], tflite_tensors, tflite_model_buffer, attr->sparseValue)) { - MS_LOG(ERROR) << "get sparseToDense -> sparseValue failed"; - return RET_ERROR; - } - if (GetTfliteData(tflite_op->inputs[3], tflite_tensors, tflite_model_buffer, attr->defaultValue)) { - MS_LOG(ERROR) << "get sparseToDense -> defaultValue failed"; - return RET_ERROR; - } - op->primitive->value.type = schema::PrimitiveType_SparseToDense; op->primitive->value.value = attr.release();