From 2833614a0bc678c11de427ddaba79e4e88cc4f57 Mon Sep 17 00:00:00 2001 From: Daniel Date: Fri, 29 Jan 2021 15:51:30 +0800 Subject: [PATCH] st multi-hot Signed-off-by: Daniel --- .../multifieldembeddinglookup_parallel.py | 315 ++++++++++++++++++ ...test_multifieldembeddinglookup_parallel.py | 26 ++ 2 files changed, 341 insertions(+) create mode 100644 tests/st/auto_parallel/multifieldembeddinglookup_parallel.py create mode 100644 tests/st/auto_parallel/test_multifieldembeddinglookup_parallel.py diff --git a/tests/st/auto_parallel/multifieldembeddinglookup_parallel.py b/tests/st/auto_parallel/multifieldembeddinglookup_parallel.py new file mode 100644 index 0000000000..d244585dca --- /dev/null +++ b/tests/st/auto_parallel/multifieldembeddinglookup_parallel.py @@ -0,0 +1,315 @@ +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ + +import os +import numpy as np + +import mindspore.ops.operations as P +from mindspore.nn import Cell +from mindspore.nn import Adam +from mindspore.nn import MultiFieldEmbeddingLookup as embedding +from mindspore import Tensor +from mindspore import context +from mindspore.train import Model +from mindspore.train.callback import CheckpointConfig +from mindspore.train.callback import ModelCheckpoint +from mindspore.train.serialization import load_checkpoint +from mindspore.train.serialization import load_param_into_net +from mindspore.communication.management import init +from mindspore.communication.management import release +from mindspore.communication.management import get_rank +from mindspore.communication.management import get_group_size +from mindspore.context import ParallelMode + + +context.set_context(mode=context.GRAPH_MODE, device_target='GPU') + + +def _count_unequal_element(data_expected, data_me, rtol, atol): + assert data_expected.shape == data_me.shape + total_count = len(data_expected.flatten()) + error = np.abs(data_expected - data_me) + greater = np.greater(error, atol + np.abs(data_me) * rtol) + loss_count = np.count_nonzero(greater) + assert (loss_count / total_count) < rtol, \ + "\ndata_expected_std:{0}\ndata_me_error:{1}\nloss:{2}". \ + format(data_expected[greater], data_me[greater], error[greater]) + + +def allclose_nparray(data_expected, data_me, rtol, atol, equal_nan=True): + if np.any(np.isnan(data_expected)): + assert np.allclose(data_expected, data_me, rtol, atol, equal_nan=equal_nan) + elif not np.allclose(data_expected, data_me, rtol, atol, equal_nan=equal_nan): + _count_unequal_element(data_expected, data_me, rtol, atol) + else: + assert True + +def clean_all_ckpt_files(folder_path): + if os.path.exists(folder_path): + for file_name in os.listdir(folder_path): + if file_name.endswith('.ckpt') or file_name.endswith('.meta'): + os.remove(os.path.join(folder_path, file_name)) + + +def find_newest_ckpt_file(folder_path): + ckpt_files = map(lambda f: os.path.join(folder_path, f), + filter(lambda f: f.endswith('.ckpt'), + os.listdir(folder_path))) + return max(ckpt_files, key=os.path.getctime) + + +class FakeDataInitMode: + RandomInit = 0 + OnesInit = 1 + UniqueInit = 2 + ZerosInit = 3 + + + + +class FakeData: + def __init__(self, size=1024, batch_size=32, image_size=(3, 224, 224), + num_classes=10, random_offset=0, use_parallel=False, + fakedata_mode=FakeDataInitMode.RandomInit): + self.size = size + self.rank_batch_size = batch_size + self.total_batch_size = self.rank_batch_size + self.random_offset = random_offset + self.image_size = image_size + self.num_classes = num_classes + self.rank_size = 1 + self.rank_id = 0 + self.batch_index = 0 + self.image_data_type = np.float32 + self.label_data_type = np.float32 + self.is_onehot = True + self.fakedata_mode = fakedata_mode + + if use_parallel is True: + init(backend_name='nccl') + self.rank_size = get_group_size() + self.rank_id = get_rank() + + self.total_batch_size = self.rank_batch_size * self.rank_size + + assert (self.size % self.total_batch_size) == 0 + + self.total_batch_data_size = (self.rank_size, self.rank_batch_size) + image_size + + def get_dataset_size(self): + return int(self.size / self.total_batch_size) + + def get_repeat_count(self): + return 1 + + def set_image_data_type(self, data_type): + self.image_data_type = data_type + + def set_label_data_type(self, data_type): + self.label_data_type = data_type + + def set_label_onehot(self, is_onehot=True): + self.is_onehot = is_onehot + + def create_tuple_iterator(self, num_epochs=-1, do_copy=True): + _ = num_epochs + return self + + def __getitem__(self, batch_index): + if batch_index * self.total_batch_size >= len(self): + raise IndexError("{} index out of range".format(self.__class__.__name__)) + rng_state = np.random.get_state() + np.random.seed(batch_index + self.random_offset) + if self.fakedata_mode == FakeDataInitMode.OnesInit: + img = np.ones(self.total_batch_data_size) + elif self.fakedata_mode == FakeDataInitMode.ZerosInit: + img = np.zeros(self.total_batch_data_size) + elif self.fakedata_mode == FakeDataInitMode.UniqueInit: + total_size = 1 + for i in self.total_batch_data_size: + total_size = total_size * i + img = np.reshape(np.arange(total_size) * 0.0001, self.total_batch_data_size) + else: + img = np.random.randn(*self.total_batch_data_size) + target = np.random.randint(0, self.num_classes, size=(self.rank_size, self.rank_batch_size)) + np.random.set_state(rng_state) + img = img[self.rank_id] + target = target[self.rank_id] + img_ret = img.astype(self.image_data_type) + target_ret = target.astype(self.label_data_type) + if self.is_onehot: + target_onehot = np.zeros(shape=(self.rank_batch_size, self.num_classes)) + target_onehot[np.arange(self.rank_batch_size), target] = 1 + target_ret = target_onehot.astype(self.label_data_type) + return Tensor(img_ret), Tensor(target_ret) + + def __len__(self): + return self.size + + def __iter__(self): + self.batch_index = 0 + return self + + def reset(self): + self.batch_index = 0 + + def __next__(self): + if self.batch_index * self.total_batch_size < len(self): + data = self[self.batch_index] + self.batch_index += 1 + return data + raise StopIteration + + + +class MultiHotNet(Cell): + def __init__(self, vocab_size, embedding_size, field_size, + param_init, target, slice_mode, sparse, operator, indices, field_ids): + super().__init__() + self.embedding = embedding(vocab_size=vocab_size, + embedding_size=embedding_size, field_size=field_size, + param_init=param_init, target=target, slice_mode=slice_mode, + sparse=sparse, operator=operator) + self.relu = P.ReLU() + self.indices = Tensor(indices) + self.field_ids = Tensor(field_ids) + if slice_mode == "table_column_slice": + self.relu.shard(((1, 1, 8),)) + elif slice_mode == "table_row_slice": + self.relu.shard(((8, 1, 1),)) + elif slice_mode == "batch_slice": + self.relu.shard(((8, 1, 1),)) + + def construct(self, values, label): + x = self.embedding(self.indices, values, self.field_ids) + output = self.relu(x) + return output + + +class ParallelMultiHotFactory: + def __init__(self, vocab_size, embedding_size, field_size, + param_init, target, slice_mode, sparse, operator, indices, field_ids): + self.vocab_size = vocab_size + self.embedding_size = embedding_size + self.field_size = field_size + self.param_init = param_init + self.target = target + self.slice_mode = slice_mode + self.sparse = sparse + self.operator = operator + self.indices = indices + self.field_ids = field_ids + self.global_rank_id = None + self.opt = None + self.model = None + self.standalone_ckpt = None + self.parallel_ckpt = None + self.loss_fn = None + self._init_parallel() + self._set_parallel_env() + + def __enter__(self): + return self + + def __exit__(self, exc_type, exc_val, exc_tb): + return + + def __del__(self): + self._release_parallel() + + def _set_parallel_env(self): + self.global_rank_id = get_rank() + + def _init_parallel(self): + self._init_parallel_flag = False + init(backend_name='nccl') + self._init_parallel_flag = True + + def _release_parallel(self): + release() + + def _model_train_and_save_ckpt(self, net, dataset, epoch): + self.opt = Adam(params=net.get_parameters()) + if self.target == 'CPU': + self.opt.target = self.target + if self.sparse: + context.set_context(enable_sparse=True) + self.model = Model(network=net, + loss_fn=self.loss_fn, + optimizer=self.opt) + ckpt_config = CheckpointConfig(keep_checkpoint_max=1) + ckpt_path = './rank_{}_ckpt'.format(self.global_rank_id) + ckpt_callback = ModelCheckpoint(prefix='parallel', directory=ckpt_path, + config=ckpt_config) + clean_all_ckpt_files(ckpt_path) + self.model.train(epoch=epoch, + train_dataset=dataset, + callbacks=[ckpt_callback], + dataset_sink_mode=False) + newest_ckpt_file = find_newest_ckpt_file(ckpt_path) + return load_checkpoint(newest_ckpt_file) + + def mindspore_auto_parallel_impl(self, dataset, epoch, device_num): + context.set_auto_parallel_context(parallel_mode=ParallelMode.AUTO_PARALLEL, + device_num=device_num) + parallel_mode_net = MultiHotNet(vocab_size=self.vocab_size, embedding_size=self.embedding_size, + field_size=self.field_size, param_init=self.param_init, target=self.target, + slice_mode=self.slice_mode, sparse=self.sparse, operator=self.operator, + indices=self.indices, field_ids=self.field_ids) + self.parallel_ckpt = self._model_train_and_save_ckpt(net=parallel_mode_net, epoch=epoch, dataset=dataset) + + def mindspore_standalone_impl(self, epoch, dataset): + context.set_auto_parallel_context(parallel_mode=ParallelMode.STAND_ALONE) + stand_alone_net = MultiHotNet(vocab_size=self.vocab_size, embedding_size=self.embedding_size, + field_size=self.field_size, param_init=self.param_init, target=self.target, + slice_mode=self.slice_mode, sparse=self.sparse, operator=self.operator, + indices=self.indices, field_ids=self.field_ids) + self.standalone_ckpt = self._model_train_and_save_ckpt(net=stand_alone_net, + epoch=epoch, dataset=dataset) + + def checkpoint_cmp(self, inputs_np, label): + standalone_net = MultiHotNet(vocab_size=self.vocab_size, embedding_size=self.embedding_size, + field_size=self.field_size, param_init=self.param_init, target=self.target, + slice_mode=self.slice_mode, sparse=self.sparse, operator=self.operator, + indices=self.indices, field_ids=self.field_ids) + parallel_net = MultiHotNet(vocab_size=self.vocab_size, embedding_size=self.embedding_size, + field_size=self.field_size, param_init=self.param_init, target=self.target, + slice_mode=self.slice_mode, sparse=self.sparse, operator=self.operator, + indices=self.indices, field_ids=self.field_ids) + load_param_into_net(standalone_net, self.standalone_ckpt) + load_param_into_net(parallel_net, self.parallel_ckpt) + standalone_out = standalone_net(Tensor(inputs_np), Tensor(label)) + parallel_out = parallel_net(Tensor(inputs_np), Tensor(label)) + allclose_nparray(standalone_out.asnumpy(), parallel_out.asnumpy(), 0.001, 0.001) + +def test_auto_parallel_multifieldembeddinglookup_device_table_column_slice_mean(): + inputs_np = 10 * np.random.randn(64, 64).astype(np.float32) + label = 10 * np.random.randn(64, 64).astype(np.float32) + indices = np.random.randint(0, 9, (64, 64), np.int32) + field_ids = np.random.randint(0, 20, (64, 64), np.int32) + fact = ParallelMultiHotFactory(vocab_size=32, embedding_size=64, field_size=64, param_init='one', target='DEVICE', + slice_mode='table_column_slice', sparse=False, operator='MEAN', + indices=indices, field_ids=field_ids) + + #stand alone + standalone_dataset = FakeData(size=64, batch_size=64, image_size=(64,)) + fact.mindspore_standalone_impl(dataset=standalone_dataset, epoch=2) + + #auto parallel + parallel_dataset = FakeData(size=64, batch_size=8, image_size=(64,), use_parallel=True) + fact.mindspore_auto_parallel_impl(dataset=parallel_dataset, epoch=2, device_num=8) + + #compare + fact.checkpoint_cmp(inputs_np=inputs_np, label=label) diff --git a/tests/st/auto_parallel/test_multifieldembeddinglookup_parallel.py b/tests/st/auto_parallel/test_multifieldembeddinglookup_parallel.py new file mode 100644 index 0000000000..0c61d9556d --- /dev/null +++ b/tests/st/auto_parallel/test_multifieldembeddinglookup_parallel.py @@ -0,0 +1,26 @@ +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +import os +import pytest + + +@pytest.mark.level0 +@pytest.mark.platform_x86_gpu_training +@pytest.mark.env_single +def test_sit_multifieldembeddinglookup_parallel(): + cmd = "mpirun -n 8 pytest -s multifieldembeddinglookup_parallel.py > multifieldembeddinglookup.log 2>&1" + ret = os.system(cmd) + os.system(f"grep -E 'ERROR|error' multifieldembeddinglookup.log -C 3") + assert ret == 0