diff --git a/model_zoo/official/cv/ssd/src/dataset.py b/model_zoo/official/cv/ssd/src/dataset.py index 19c66fc598..98097f474b 100644 --- a/model_zoo/official/cv/ssd/src/dataset.py +++ b/model_zoo/official/cv/ssd/src/dataset.py @@ -63,7 +63,7 @@ def random_sample_crop(image, boxes): if not drop_mask.any(): continue - if overlap[drop_mask].min() < min_iou: + if overlap[drop_mask].min() < min_iou and overlap[drop_mask].max() > (min_iou + 0.2): continue image_t = image_t[rect[0]:rect[2], rect[1]:rect[3], :] diff --git a/model_zoo/official/cv/ssd/src/init_params.py b/model_zoo/official/cv/ssd/src/init_params.py index 6e1f8869b3..335030d2e9 100644 --- a/model_zoo/official/cv/ssd/src/init_params.py +++ b/model_zoo/official/cv/ssd/src/init_params.py @@ -14,16 +14,17 @@ # ============================================================================ """Parameters utils""" -from mindspore import Tensor from mindspore.common.initializer import initializer, TruncatedNormal +import numpy as np def init_net_param(network, initialize_mode='TruncatedNormal'): """Init the parameters in net.""" params = network.trainable_params() for p in params: - if isinstance(p.data, Tensor) and 'beta' not in p.name and 'gamma' not in p.name and 'bias' not in p.name: + if 'beta' not in p.name and 'gamma' not in p.name and 'bias' not in p.name: + np.random.seed(seed=1) if initialize_mode == 'TruncatedNormal': - p.set_parameter_data(initializer(TruncatedNormal(0.03), p.data.shape, p.data.dtype)) + p.set_parameter_data(initializer(TruncatedNormal(), p.data.shape, p.data.dtype)) else: p.set_parameter_data(initialize_mode, p.data.shape, p.data.dtype)