diff --git a/mindspore/common/parameter.py b/mindspore/common/parameter.py index a9614855f3..2135bb9d86 100644 --- a/mindspore/common/parameter.py +++ b/mindspore/common/parameter.py @@ -502,9 +502,11 @@ class Parameter(Tensor_): Args: layout (Union[None, list(list(int))]): Parameter slice layout [dev_mat, tensor_map, slice_shape]. Default: None. + - dev_mat (list(int)): Device matrix. - tensor_map (list(int)): Tensor map. - slice_shape (list(int)): Shape of slice. + set_sliced (bool): True if the parameter is set sliced after initializing the data. Default: False. diff --git a/mindspore/dataset/transforms/c_transforms.py b/mindspore/dataset/transforms/c_transforms.py index 463e1be14b..dcea2feb3c 100644 --- a/mindspore/dataset/transforms/c_transforms.py +++ b/mindspore/dataset/transforms/c_transforms.py @@ -164,15 +164,15 @@ class Slice(cde.SliceOp): (Currently only rank-1 tensors are supported). Args: - *slices(Union[int, list(int), slice, None, Ellipsis]): - Maximum `n` number of arguments to slice a tensor of rank `n`. + slices (Union[int, list[int], slice, None, Ellipsis]): + Maximum `n` number of arguments to slice a tensor of rank `n` . One object in slices can be one of: 1. :py:obj:`int`: Slice this index only along the first dimension. Negative index is supported. 2. :py:obj:`list(int)`: Slice these indices along the first dimension. Negative indices are supported. 3. :py:obj:`slice`: Slice the generated indices from the slice object along the first dimension. Similar to start:stop:step. - 4. :py:obj:`None`: Slice the whole dimension. Similar to :py:obj:`[:]' in Python indexing. + 4. :py:obj:`None`: Slice the whole dimension. Similar to :py:obj:`[:]` in Python indexing. 5. :py:obj:`Ellipsis`: Slice the whole dimension, same result with `None`. Examples: diff --git a/mindspore/ops/operations/array_ops.py b/mindspore/ops/operations/array_ops.py index 07dba39610..a746af6d62 100644 --- a/mindspore/ops/operations/array_ops.py +++ b/mindspore/ops/operations/array_ops.py @@ -1887,6 +1887,7 @@ class Tile(PrimitiveWithInfer): Outputs: Tensor, has the same data type as the `input_x`. + - If the length of `multiples` is the same as the length of shape of `input_x`, then the shape of their corresponding positions can be multiplied, and the shape of Outputs is :math:`(x_1*y_1, x_2*y_2, ..., x_S*y_R)`. diff --git a/mindspore/ops/operations/sponge_ops.py b/mindspore/ops/operations/sponge_ops.py index bc436e8384..85e6cfafb7 100644 --- a/mindspore/ops/operations/sponge_ops.py +++ b/mindspore/ops/operations/sponge_ops.py @@ -901,11 +901,10 @@ class Dihedral14LJForce(PrimitiveWithInfer): F = k*(-12*A/|dr|^{14} + 6*B/|dr|^{8})*dr Args: - dihedral_14_numbers(int32): the number of necessary dihedral 1,4 terms M. - atom_numbers(int32): the number of atoms N. + dihedral_14_numbers (int32): the number of necessary dihedral 1,4 terms M. + atom_numbers (int32): the number of atoms N. Inputs: - - **uint_crd_f** (Tensor, uint32) - [N, 3], the unsigned int coordinate value of each atom. - **LJ_type** (Tensor, int32) - [N,], the Lennard-Jones type of each atom. - **charge** (Tensor, float32) - [N,], the charge of each atom.