diff --git a/model_zoo/official/nlp/bert/README.md b/model_zoo/official/nlp/bert/README.md index 78ceb89659..e4c88791c4 100644 --- a/model_zoo/official/nlp/bert/README.md +++ b/model_zoo/official/nlp/bert/README.md @@ -1,4 +1,5 @@ # Contents + - [Contents](#contents) - [BERT Description](#bert-description) - [Model Architecture](#model-architecture) @@ -6,55 +7,61 @@ - [Environment Requirements](#environment-requirements) - [Quick Start](#quick-start) - [Script Description](#script-description) - - [Script and Sample Code](#script-and-sample-code) - - [Script Parameters](#script-parameters) - - [Pre-Training](#pre-training) - - [Fine-Tuning and Evaluation](#fine-tuning-and-evaluation) - - [Options and Parameters](#options-and-parameters) - - [Options:](#options) - - [Parameters:](#parameters) - - [Training Process](#training-process) - - [Training](#training) - - [Running on Ascend](#running-on-ascend) - - [Distributed Training](#distributed-training) - - [Running on Ascend](#running-on-ascend-1) - - [Evaluation Process](#evaluation-process) - - [Evaluation](#evaluation) - - [evaluation on cola dataset when running on Ascend](#evaluation-on-cola-dataset-when-running-on-ascend) - - [evaluation on cluener dataset when running on Ascend](#evaluation-on-cluener-dataset-when-running-on-ascend) - - [evaluation on squad v1.1 dataset when running on Ascend](#evaluation-on-squad-v11-dataset-when-running-on-ascend) - - [Model Description](#model-description) - - [Performance](#performance) - - [Pretraining Performance](#pretraining-performance) - - [Inference Performance](#inference-performance) + - [Script and Sample Code](#script-and-sample-code) + - [Script Parameters](#script-parameters) + - [Pre-Training](#pre-training) + - [Fine-Tuning and Evaluation](#fine-tuning-and-evaluation) + - [Options and Parameters](#options-and-parameters) + - [Options:](#options) + - [Parameters:](#parameters) + - [Training Process](#training-process) + - [Training](#training) + - [Running on Ascend](#running-on-ascend) + - [Distributed Training](#distributed-training) + - [Running on Ascend](#running-on-ascend-1) + - [Evaluation Process](#evaluation-process) + - [Evaluation](#evaluation) + - [evaluation on cola dataset when running on Ascend](#evaluation-on-cola-dataset-when-running-on-ascend) + - [evaluation on cluener dataset when running on Ascend](#evaluation-on-cluener-dataset-when-running-on-ascend) + - [evaluation on squad v1.1 dataset when running on Ascend](#evaluation-on-squad-v11-dataset-when-running-on-ascend) + - [Model Description](#model-description) + - [Performance](#performance) + - [Pretraining Performance](#pretraining-performance) + - [Inference Performance](#inference-performance) - [Description of Random Situation](#description-of-random-situation) - [ModelZoo Homepage](#modelzoo-homepage) # [BERT Description](#contents) + The BERT network was proposed by Google in 2018. The network has made a breakthrough in the field of NLP. The network uses pre-training to achieve a large network structure without modifying, and only by adding an output layer to achieve multiple text-based tasks in fine-tuning. The backbone code of BERT adopts the Encoder structure of Transformer. The attention mechanism is introduced to enable the output layer to capture high-latitude global semantic information. The pre-training uses denoising and self-encoding tasks, namely MLM(Masked Language Model) and NSP(Next Sentence Prediction). No need to label data, pre-training can be performed on massive text data, and only a small amount of data to fine-tuning downstream tasks to obtain good results. The pre-training plus fune-tuning mode created by BERT is widely adopted by subsequent NLP networks. -[Paper](https://arxiv.org/abs/1810.04805): Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova. [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding]((https://arxiv.org/abs/1810.04805)). arXiv preprint arXiv:1810.04805. +[Paper](https://arxiv.org/abs/1810.04805): Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova. [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding]((https://arxiv.org/abs/1810.04805)). arXiv preprint arXiv:1810.04805. [Paper](https://arxiv.org/abs/1909.00204): Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen, Qun Liu. [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204). arXiv preprint arXiv:1909.00204. # [Model Architecture](#contents) -The backbone structure of BERT is transformer. For BERT_base, the transformer contains 12 encoder modules, each module contains one self-attention module and each self-attention module contains one attention module. For BERT_NEZHA, the transformer contains 24 encoder modules, each module contains one self-attention module and each self-attention module contains one attention module. The difference between BERT_base and BERT_NEZHA is that BERT_base uses absolute position encoding to produce position embedding vector and BERT_NEZHA uses relative position encoding. + +The backbone structure of BERT is transformer. For BERT_base, the transformer contains 12 encoder modules, each module contains one self-attention module and each self-attention module contains one attention module. For BERT_NEZHA, the transformer contains 24 encoder modules, each module contains one self-attention module and each self-attention module contains one attention module. The difference between BERT_base and BERT_NEZHA is that BERT_base uses absolute position encoding to produce position embedding vector and BERT_NEZHA uses relative position encoding. # [Dataset](#contents) + - Download the zhwiki or enwiki dataset for pre-training. Extract and refine texts in the dataset with [WikiExtractor](https://github.com/attardi/wikiextractor). Convert the dataset to TFRecord format. Please refer to create_pretraining_data.py file in [BERT](https://github.com/google-research/bert) repository. - Download dataset for fine-tuning and evaluation such as CLUENER, TNEWS, SQuAD v1.1, etc. Convert dataset files from JSON format to TFRECORD format, please refer to run_classifier.py file in [BERT](https://github.com/google-research/bert) repository. # [Environment Requirements](#contents) + - Hardware(Ascend) - - Prepare hardware environment with Ascend processor. If you want to try Ascend, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get access to the resources. + - Prepare hardware environment with Ascend processor. If you want to try Ascend, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get access to the resources. - Framework - - [MindSpore](https://gitee.com/mindspore/mindspore) + - [MindSpore](https://gitee.com/mindspore/mindspore) - For more information, please check the resources below: - - [MindSpore Tutorials](https://www.mindspore.cn/tutorial/training/en/master/index.html) - - [MindSpore Python API](https://www.mindspore.cn/doc/api_python/en/master/index.html) + - [MindSpore Tutorials](https://www.mindspore.cn/tutorial/training/en/master/index.html) + - [MindSpore Python API](https://www.mindspore.cn/doc/api_python/en/master/index.html) # [Quick Start](#contents) + After installing MindSpore via the official website, you can start pre-training, fine-tuning and evaluation as follows: + ```bash # run standalone pre-training example bash scripts/run_standalone_pretrain_ascend.sh 0 1 /path/cn-wiki-128 @@ -64,31 +71,37 @@ bash scripts/run_distributed_pretrain_ascend.sh /path/cn-wiki-128 /path/hccl.jso # run fine-tuning and evaluation example - If you are going to run a fine-tuning task, please prepare a checkpoint generated from pre-training. -- Set bert network config and optimizer hyperparameters in `finetune_eval_config.py`. - -- Classification task: Set task related hyperparameters in scripts/run_classifier.sh. +- Set bert network config and optimizer hyperparameters in `finetune_eval_config.py`. + +- Classification task: Set task related hyperparameters in scripts/run_classifier.sh. - Run `bash scripts/run_classifier.py` for fine-tuning of BERT-base and BERT-NEZHA model. bash scripts/run_classifier.sh - + - NER task: Set task related hyperparameters in scripts/run_ner.sh. - Run `bash scripts/run_ner.py` for fine-tuning of BERT-base and BERT-NEZHA model. bash scripts/run_ner.sh - -- SQuAD task: Set task related hyperparameters in scripts/run_squad.sh. + +- SQuAD task: Set task related hyperparameters in scripts/run_squad.sh. - Run `bash scripts/run_squad.py` for fine-tuning of BERT-base and BERT-NEZHA model. - bash scripts/run_squad.sh + bash scripts/run_squad.sh ``` For distributed training, an hccl configuration file with JSON format needs to be created in advance. -Please follow the instructions in the link below: -https:gitee.com/mindspore/mindspore/tree/master/model_zoo/utils/hccl_tools. + +For distributed training on single machine, [here](https://gitee.com/mindspore/mindspore/tree/master/config/hccl_single_machine_multi_rank.json) is an example hccl.json. + +For distributed training among multiple machines, training command should be executed on each machine in a small time interval. Thus, an hccl.json is needed on each machine. [here](https://gitee.com/mindspore/mindspore/tree/master/config/hccl_multi_machine_multi_rank.json) is an example of hccl.json for multi-machine case. + +Please follow the instructions in the link below to create an hccl.json file in need: +[https://gitee.com/mindspore/mindspore/tree/master/model_zoo/utils/hccl_tools](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/utils/hccl_tools). For dataset, if you want to set the format and parameters, a schema configuration file with JSON format needs to be created, please refer to [tfrecord](https://www.mindspore.cn/doc/programming_guide/zh-CN/master/dataset_loading.html#tfrecord) format. -``` -For pretraining, schema file contains ["input_ids", "input_mask", "segment_ids", "next_sentence_labels", "masked_lm_positions", "masked_lm_ids", "masked_lm_weights"]. + +```text +For pretraining, schema file contains ["input_ids", "input_mask", "segment_ids", "next_sentence_labels", "masked_lm_positions", "masked_lm_ids", "masked_lm_weights"]. For ner or classification task, schema file contains ["input_ids", "input_mask", "segment_ids", "label_ids"]. @@ -138,7 +151,7 @@ For example, the schema file of cn-wiki-128 dataset for pretraining shows as fol } } } -``` +``` # [Script Description](#contents) @@ -151,9 +164,9 @@ For example, the schema file of cn-wiki-128 dataset for pretraining shows as fol ├─scripts ├─ascend_distributed_launcher ├─__init__.py - ├─hyper_parameter_config.ini # hyper paramter for distributed pretraining + ├─hyper_parameter_config.ini # hyper paramter for distributed pretraining ├─get_distribute_pretrain_cmd.py # script for distributed pretraining - ├─README.md + ├─README.md ├─run_classifier.sh # shell script for standalone classifier task on ascend or gpu ├─run_ner.sh # shell script for standalone NER task on ascend or gpu ├─run_squad.sh # shell script for standalone SQUAD task on ascend or gpu @@ -168,9 +181,9 @@ For example, the schema file of cn-wiki-128 dataset for pretraining shows as fol ├─bert_for_pre_training.py # backbone code of network ├─bert_model.py # backbone code of network ├─clue_classification_dataset_precess.py # data preprocessing - ├─cluner_evaluation.py # evaluation for cluner + ├─cluner_evaluation.py # evaluation for cluner ├─config.py # parameter configuration for pretraining - ├─CRF.py # assessment method for clue dataset + ├─CRF.py # assessment method for clue dataset ├─dataset.py # data preprocessing ├─finetune_eval_config.py # parameter configuration for finetuning ├─finetune_eval_model.py # backbone code of network @@ -184,16 +197,18 @@ For example, the schema file of cn-wiki-128 dataset for pretraining shows as fol ``` ## [Script Parameters](#contents) + ### Pre-Training -``` -usage: run_pretrain.py [--distribute DISTRIBUTE] [--epoch_size N] [----device_num N] [--device_id N] + +```text +usage: run_pretrain.py [--distribute DISTRIBUTE] [--epoch_size N] [----device_num N] [--device_id N] [--enable_save_ckpt ENABLE_SAVE_CKPT] [--device_target DEVICE_TARGET] [--enable_lossscale ENABLE_LOSSSCALE] [--do_shuffle DO_SHUFFLE] - [--enable_data_sink ENABLE_DATA_SINK] [--data_sink_steps N] + [--enable_data_sink ENABLE_DATA_SINK] [--data_sink_steps N] [--accumulation_steps N] [--save_checkpoint_path SAVE_CHECKPOINT_PATH] [--load_checkpoint_path LOAD_CHECKPOINT_PATH] - [--save_checkpoint_steps N] [--save_checkpoint_num N] + [--save_checkpoint_steps N] [--save_checkpoint_num N] [--data_dir DATA_DIR] [--schema_dir SCHEMA_DIR] [train_steps N] options: @@ -216,18 +231,20 @@ options: --data_dir path to dataset directory: PATH, default is "" --schema_dir path to schema.json file, PATH, default is "" ``` + ### Fine-Tuning and Evaluation -``` -usage: run_ner.py [--device_target DEVICE_TARGET] [--do_train DO_TRAIN] [----do_eval DO_EVAL] - [--assessment_method ASSESSMENT_METHOD] [--use_crf USE_CRF] + +```text +usage: run_ner.py [--device_target DEVICE_TARGET] [--do_train DO_TRAIN] [----do_eval DO_EVAL] + [--assessment_method ASSESSMENT_METHOD] [--use_crf USE_CRF] [--device_id N] [--epoch_num N] [--vocab_file_path VOCAB_FILE_PATH] - [--label2id_file_path LABEL2ID_FILE_PATH] - [--train_data_shuffle TRAIN_DATA_SHUFFLE] - [--eval_data_shuffle EVAL_DATA_SHUFFLE] + [--label2id_file_path LABEL2ID_FILE_PATH] + [--train_data_shuffle TRAIN_DATA_SHUFFLE] + [--eval_data_shuffle EVAL_DATA_SHUFFLE] [--save_finetune_checkpoint_path SAVE_FINETUNE_CHECKPOINT_PATH] - [--load_pretrain_checkpoint_path LOAD_PRETRAIN_CHECKPOINT_PATH] - [--train_data_file_path TRAIN_DATA_FILE_PATH] - [--eval_data_file_path EVAL_DATA_FILE_PATH] + [--load_pretrain_checkpoint_path LOAD_PRETRAIN_CHECKPOINT_PATH] + [--train_data_file_path TRAIN_DATA_FILE_PATH] + [--eval_data_file_path EVAL_DATA_FILE_PATH] [--schema_file_path SCHEMA_FILE_PATH] options: --device_target device where the code will be implemented: "Ascend" | "GPU", default is "Ascend" @@ -249,17 +266,17 @@ options: --eval_data_file_path ner tfrecord for predictions if f1 is used to evaluate result, ner json for predictions if clue_benchmark is used to evaluate result --schema_file_path path to datafile schema file -usage: run_squad.py [--device_target DEVICE_TARGET] [--do_train DO_TRAIN] [----do_eval DO_EVAL] +usage: run_squad.py [--device_target DEVICE_TARGET] [--do_train DO_TRAIN] [----do_eval DO_EVAL] [--device_id N] [--epoch_num N] [--num_class N] [--vocab_file_path VOCAB_FILE_PATH] - [--eval_json_path EVAL_JSON_PATH] - [--train_data_shuffle TRAIN_DATA_SHUFFLE] - [--eval_data_shuffle EVAL_DATA_SHUFFLE] + [--eval_json_path EVAL_JSON_PATH] + [--train_data_shuffle TRAIN_DATA_SHUFFLE] + [--eval_data_shuffle EVAL_DATA_SHUFFLE] [--save_finetune_checkpoint_path SAVE_FINETUNE_CHECKPOINT_PATH] - [--load_pretrain_checkpoint_path LOAD_PRETRAIN_CHECKPOINT_PATH] - [--load_finetune_checkpoint_path LOAD_FINETUNE_CHECKPOINT_PATH] - [--train_data_file_path TRAIN_DATA_FILE_PATH] - [--eval_data_file_path EVAL_DATA_FILE_PATH] + [--load_pretrain_checkpoint_path LOAD_PRETRAIN_CHECKPOINT_PATH] + [--load_finetune_checkpoint_path LOAD_FINETUNE_CHECKPOINT_PATH] + [--train_data_file_path TRAIN_DATA_FILE_PATH] + [--eval_data_file_path EVAL_DATA_FILE_PATH] [--schema_file_path SCHEMA_FILE_PATH] options: --device_target device where the code will be implemented: "Ascend" | "GPU", default is "Ascend" @@ -279,15 +296,15 @@ options: --eval_data_file_path squad tfrecord for predictions. E.g., dev1.1.tfrecord --schema_file_path path to datafile schema file -usage: run_classifier.py [--device_target DEVICE_TARGET] [--do_train DO_TRAIN] [----do_eval DO_EVAL] +usage: run_classifier.py [--device_target DEVICE_TARGET] [--do_train DO_TRAIN] [----do_eval DO_EVAL] [--assessment_method ASSESSMENT_METHOD] [--device_id N] [--epoch_num N] [--num_class N] [--save_finetune_checkpoint_path SAVE_FINETUNE_CHECKPOINT_PATH] - [--load_pretrain_checkpoint_path LOAD_PRETRAIN_CHECKPOINT_PATH] - [--load_finetune_checkpoint_path LOAD_FINETUNE_CHECKPOINT_PATH] - [--train_data_shuffle TRAIN_DATA_SHUFFLE] - [--eval_data_shuffle EVAL_DATA_SHUFFLE] - [--train_data_file_path TRAIN_DATA_FILE_PATH] - [--eval_data_file_path EVAL_DATA_FILE_PATH] + [--load_pretrain_checkpoint_path LOAD_PRETRAIN_CHECKPOINT_PATH] + [--load_finetune_checkpoint_path LOAD_FINETUNE_CHECKPOINT_PATH] + [--train_data_shuffle TRAIN_DATA_SHUFFLE] + [--eval_data_shuffle EVAL_DATA_SHUFFLE] + [--train_data_file_path TRAIN_DATA_FILE_PATH] + [--eval_data_file_path EVAL_DATA_FILE_PATH] [--schema_file_path SCHEMA_FILE_PATH] options: --device_target targeted device to run task: Ascend | GPU @@ -306,21 +323,26 @@ options: --eval_data_file_path tfrecord for predictions. E.g., dev.tfrecord --schema_file_path path to datafile schema file ``` + ## Options and Parameters + Parameters for training and evaluation can be set in file `config.py` and `finetune_eval_config.py` respectively. -### Options: -``` + +### Options + +```text config for lossscale and etc. bert_network version of BERT model: base | nezha, default is base batch_size batch size of input dataset: N, default is 16 loss_scale_value initial value of loss scale: N, default is 2^32 scale_factor factor used to update loss scale: N, default is 2 - scale_window steps for once updatation of loss scale: N, default is 1000 + scale_window steps for once updatation of loss scale: N, default is 1000 optimizer optimizer used in the network: AdamWerigtDecayDynamicLR | Lamb | Momentum, default is "Lamb" ``` -### Parameters: -``` +### Parameters + +```text Parameters for dataset and network (Pre-Training/Fine-Tuning/Evaluation): seq_length length of input sequence: N, default is 128 vocab_size size of each embedding vector: N, must be consistant with the dataset you use. Default is 21136 @@ -362,13 +384,18 @@ Parameters for optimizer: ``` ## [Training Process](#contents) + ### Training + #### Running on Ascend -``` + +```bash bash scripts/run_standalone_pretrain_ascend.sh 0 1 /path/cn-wiki-128 ``` + The command above will run in the background, you can view training logs in pretraining_log.txt. After training finished, you will get some checkpoint files under the script folder by default. The loss values will be displayed as follows: -``` + +```text # grep "epoch" pretraining_log.txt epoch: 0.0, current epoch percent: 0.000, step: 1, outpus are (Tensor(shape=[1], dtype=Float32, [ 1.0856101e+01]), Tensor(shape=[], dtype=Bool, False), Tensor(shape=[], dtype=Float32, 65536)) epoch: 0.0, current epoch percent: 0.000, step: 2, outpus are (Tensor(shape=[1], dtype=Float32, [ 1.0821701e+01]), Tensor(shape=[], dtype=Bool, False), Tensor(shape=[], dtype=Float32, 65536)) @@ -376,23 +403,29 @@ epoch: 0.0, current epoch percent: 0.000, step: 2, outpus are (Tensor(shape=[1], ``` > **Attention** If you are running with a huge dataset, it's better to add an external environ variable to make sure the hccl won't timeout. -> ``` +> +> ```bash > export HCCL_CONNECT_TIMEOUT=600 > ``` +> > This will extend the timeout limits of hccl from the default 120 seconds to 600 seconds. - > **Attention** If you are running with a big bert model, some error of protobuf may occurs while saving checkpoints, try with the following environ set. -> ``` +> +> ```bash > export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python > ``` ### Distributed Training + #### Running on Ascend -``` + +```bash bash scripts/run_distributed_pretrain_ascend.sh /path/cn-wiki-128 /path/hccl.json ``` + The command above will run in the background, you can view training logs in pretraining_log.txt. After training finished, you will get some checkpoint files under the LOG* folder by default. The loss value will be displayed as follows: -``` + +```bash # grep "epoch" LOG*/pretraining_log.txt epoch: 0.0, current epoch percent: 0.001, step: 100, outpus are (Tensor(shape=[1], dtype=Float32, [ 1.08209e+01]), Tensor(shape=[], dtype=Bool, False), Tensor(shape=[], dtype=Float32, 65536)) epoch: 0.0, current epoch percent: 0.002, step: 200, outpus are (Tensor(shape=[1], dtype=Float32, [ 1.07566e+01]), Tensor(shape=[], dtype=Bool, False), Tensor(shape=[], dtype=Float32, 65536)) @@ -404,47 +437,61 @@ epoch: 0.0, current epoch percent: 0.002, step: 200, outpus are (Tensor(shape=[1 > **Attention** This will bind the processor cores according to the `device_num` and total processor numbers. If you don't expect to run pretraining with binding processor cores, remove the operations about `taskset` in `scripts/ascend_distributed_launcher/get_distribute_pretrain_cmd.py` - ## [Evaluation Process](#contents) + ### Evaluation + #### evaluation on cola dataset when running on Ascend + Before running the command below, please check the load pretrain checkpoint path has been set. Please set the checkpoint path to be the absolute full path, e.g:"/username/pretrain/checkpoint_100_300.ckpt". -``` + +```bash bash scripts/run_classifier.sh ``` + The command above will run in the background, you can view training logs in classfier_log.txt. If you choose accuracy as assessment method, the result will be as follows: -``` + +```text acc_num XXX, total_num XXX, accuracy 0.588986 ``` -#### evaluation on cluener dataset when running on Ascend -``` +#### evaluation on cluener dataset when running on Ascend + +```bash bash scripts/ner.sh ``` + The command above will run in the background, you can view training logs in ner_log.txt. If you choose F1 as assessment method, the result will be as follows: -``` + +```text Precision 0.920507 Recall 0.948683 F1 0.920507 ``` - -#### evaluation on squad v1.1 dataset when running on Ascend -``` + +#### evaluation on squad v1.1 dataset when running on Ascend + +```bash bash scripts/squad.sh ``` + The command above will run in the background, you can view training logs in squad_log.txt. The result will be as follows: -``` + +```text {"exact_match": 80.3878923040233284, "f1": 87.6902384023850329} ``` ## [Model Description](#contents) + ## [Performance](#contents) + ### Pretraining Performance + | Parameters | Ascend | GPU | | -------------------------- | ---------------------------------------------------------- | ------------------------- | | Model Version | BERT_base | BERT_base | @@ -482,27 +529,27 @@ The result will be as follows: | Speed | 360ms/step | 1.913 | | Total time | 200h | | | Params (M) | 340M | | -| Checkpoint for Fine tuning | 3.2G(.ckpt file) | | +| Checkpoint for Fine tuning | 3.2G(.ckpt file) | | | Scripts | [BERT_NEZHA](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/nlp/bert) | | #### Inference Performance | Parameters | Ascend | GPU | -| -------------------------- | ----------------------------- | ------------------------- | -| Model Version | | | -| Resource | Ascend 910 | NV SMX2 V100-32G | -| uploaded Date | 08/22/2020 | 05/22/2020 | +| -------------------------- | ----------------------------- | ------------------------- | +| Model Version | | | +| Resource | Ascend 910 | NV SMX2 V100-32G | +| uploaded Date | 08/22/2020 | 05/22/2020 | | MindSpore Version | 1.0.0 | 1.0.0 | | Dataset | cola, 1.2W | ImageNet, 1.2W | -| batch_size | 32(1P) | 130(8P) | -| Accuracy | 0.588986 | ACC1[72.07%] ACC5[90.90%] | -| Speed | 59.25ms/step | | -| Total time | 15min | | -| Model for inference | 1.2G(.ckpt file) | | +| batch_size | 32(1P) | 130(8P) | +| Accuracy | 0.588986 | ACC1[72.07%] ACC5[90.90%] | +| Speed | 59.25ms/step | | +| Total time | 15min | | +| Model for inference | 1.2G(.ckpt file) | | # [Description of Random Situation](#contents) -In run_standalone_pretrain.sh and run_distributed_pretrain.sh, we set do_shuffle to True to shuffle the dataset by default. +In run_standalone_pretrain.sh and run_distributed_pretrain.sh, we set do_shuffle to True to shuffle the dataset by default. In run_classifier.sh, run_ner.sh and run_squad.sh, we set train_data_shuffle and eval_data_shuffle to True to shuffle the dataset by default. @@ -511,5 +558,5 @@ In config.py, we set the hidden_dropout_prob and attention_pros_dropout_prob to In run_pretrain.py, we set a random seed to make sure that each node has the same initial weight in distribute training. # [ModelZoo Homepage](#contents) - -Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo). + +Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).