diff --git a/model_zoo/official/cv/alexnet/train.py b/model_zoo/official/cv/alexnet/train.py index d4d1de55c8..55bcf2404c 100644 --- a/model_zoo/official/cv/alexnet/train.py +++ b/model_zoo/official/cv/alexnet/train.py @@ -44,6 +44,7 @@ if __name__ == "__main__": parser = argparse.ArgumentParser(description='MindSpore AlexNet Example') parser.add_argument('--dataset_name', type=str, default='cifar10', choices=['imagenet', 'cifar10'], help='dataset name.') + parser.add_argument('--sink_size', type=int, default=-1, help='control the amount of data in each sink') parser.add_argument('--device_target', type=str, default="Ascend", choices=['Ascend', 'GPU'], help='device where the code will be implemented (default: Ascend)') parser.add_argument('--data_path', type=str, default="./", help='path where the dataset is saved') @@ -98,17 +99,16 @@ if __name__ == "__main__": loss_scale_manager = None metrics = None + step_per_epoch = ds_train.get_dataset_size() if args.sink_size == -1 else args.sink_size if args.dataset_name == 'cifar10': loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean") - lr = Tensor(get_lr_cifar10(0, cfg.learning_rate, cfg.epoch_size, ds_train.get_dataset_size())) + lr = Tensor(get_lr_cifar10(0, cfg.learning_rate, cfg.epoch_size, step_per_epoch)) opt = nn.Momentum(network.trainable_params(), lr, cfg.momentum) metrics = {"Accuracy": Accuracy()} elif args.dataset_name == 'imagenet': loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean") - - lr = Tensor(get_lr_imagenet(cfg, ds_train.get_dataset_size())) - + lr = Tensor(get_lr_imagenet(cfg, step_per_epoch)) opt = nn.Momentum(params=get_param_groups(network), learning_rate=lr, momentum=cfg.momentum, @@ -137,11 +137,11 @@ if __name__ == "__main__": else: ckpt_save_dir = args.ckpt_path - time_cb = TimeMonitor(data_size=ds_train.get_dataset_size()) - config_ck = CheckpointConfig(save_checkpoint_steps=ds_train.get_dataset_size(), + time_cb = TimeMonitor(data_size=step_per_epoch) + config_ck = CheckpointConfig(save_checkpoint_steps=cfg.save_checkpoint_steps, keep_checkpoint_max=cfg.keep_checkpoint_max) ckpoint_cb = ModelCheckpoint(prefix="checkpoint_alexnet", directory=ckpt_save_dir, config=config_ck) print("============== Starting Training ==============") model.train(cfg.epoch_size, ds_train, callbacks=[time_cb, ckpoint_cb, LossMonitor()], - dataset_sink_mode=args.dataset_sink_mode) + dataset_sink_mode=args.dataset_sink_mode, sink_size=args.sink_size)