From 62652cc29d1a989b2a5002e83deb55c33caf2ef5 Mon Sep 17 00:00:00 2001 From: wilfChen Date: Fri, 11 Dec 2020 11:17:14 +0800 Subject: [PATCH] bert readme update --- model_zoo/official/nlp/bert/README.md | 162 ++++++++++++++++++-------- 1 file changed, 114 insertions(+), 48 deletions(-) diff --git a/model_zoo/official/nlp/bert/README.md b/model_zoo/official/nlp/bert/README.md index e4c88791c4..a5bc379141 100644 --- a/model_zoo/official/nlp/bert/README.md +++ b/model_zoo/official/nlp/bert/README.md @@ -17,8 +17,10 @@ - [Training Process](#training-process) - [Training](#training) - [Running on Ascend](#running-on-ascend) + - [running on GPU](#running-on-gpu) - [Distributed Training](#distributed-training) - [Running on Ascend](#running-on-ascend-1) + - [running on GPU](#running-on-gpu-1) - [Evaluation Process](#evaluation-process) - [Evaluation](#evaluation) - [evaluation on cola dataset when running on Ascend](#evaluation-on-cola-dataset-when-running-on-ascend) @@ -50,8 +52,8 @@ The backbone structure of BERT is transformer. For BERT_base, the transformer co # [Environment Requirements](#contents) -- Hardware(Ascend) - - Prepare hardware environment with Ascend processor. If you want to try Ascend, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get access to the resources. +- Hardware(Ascend/GPU) + - Prepare hardware environment with Ascend/GPU processor. If you want to try Ascend, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get access to the resources. - Framework - [MindSpore](https://gitee.com/mindspore/mindspore) - For more information, please check the resources below: @@ -62,6 +64,8 @@ The backbone structure of BERT is transformer. For BERT_base, the transformer co After installing MindSpore via the official website, you can start pre-training, fine-tuning and evaluation as follows: +- Running on Ascend + ```bash # run standalone pre-training example bash scripts/run_standalone_pretrain_ascend.sh 0 1 /path/cn-wiki-128 @@ -89,7 +93,36 @@ bash scripts/run_distributed_pretrain_ascend.sh /path/cn-wiki-128 /path/hccl.jso bash scripts/run_squad.sh ``` -For distributed training, an hccl configuration file with JSON format needs to be created in advance. +- Running on GPU + +```bash +# run standalone pre-training example +bash run_standalone_pretrain_for_gpu.sh 0 1 /path/cn-wiki-128 + +# run distributed pre-training example +bash scripts/run_distributed_pretrain_for_gpu.sh 8 40 /path/cn-wiki-128 + +# run fine-tuning and evaluation example +- If you are going to run a fine-tuning task, please prepare a checkpoint generated from pre-training. +- Set bert network config and optimizer hyperparameters in `finetune_eval_config.py`. + +- Classification task: Set task related hyperparameters in scripts/run_classifier.sh. +- Run `bash scripts/run_classifier.py` for fine-tuning of BERT-base and BERT-NEZHA model. + + bash scripts/run_classifier.sh + +- NER task: Set task related hyperparameters in scripts/run_ner.sh. +- Run `bash scripts/run_ner.py` for fine-tuning of BERT-base and BERT-NEZHA model. + + bash scripts/run_ner.sh + +- SQuAD task: Set task related hyperparameters in scripts/run_squad.sh. +- Run `bash scripts/run_squad.py` for fine-tuning of BERT-base and BERT-NEZHA model. + + bash scripts/run_squad.sh +``` + +For distributed training on Ascend, an hccl configuration file with JSON format needs to be created in advance. For distributed training on single machine, [here](https://gitee.com/mindspore/mindspore/tree/master/config/hccl_single_machine_multi_rank.json) is an example hccl.json. @@ -402,7 +435,22 @@ epoch: 0.0, current epoch percent: 0.000, step: 2, outpus are (Tensor(shape=[1], ... ``` -> **Attention** If you are running with a huge dataset, it's better to add an external environ variable to make sure the hccl won't timeout. +#### running on GPU + +```bash +bash scripts/run_standalone_pretrain_for_gpu.sh 0 1 /path/cn-wiki-128 +``` + +The command above will run in the background, you can view the results the file pretraining_log.txt. After training, you will get some checkpoint files under the script folder by default. The loss value will be achieved as follows: + +```bash +# grep "epoch" pretraining_log.txt +epoch: 0.0, current epoch percent: 0.000, step: 1, outpus are (Tensor(shape=[1], dtype=Float32, [ 1.0856101e+01]), Tensor(shape=[], dtype=Bool, False), Tensor(shape=[], dtype=Float32, 65536)) +epoch: 0.0, current epoch percent: 0.000, step: 2, outpus are (Tensor(shape=[1], dtype=Float32, [ 1.0821701e+01]), Tensor(shape=[], dtype=Bool, False), Tensor(shape=[], dtype=Float32, 65536)) +... +``` + +> **Attention** If you are running with a huge dataset on Ascend, it's better to add an external environ variable to make sure the hccl won't timeout. > > ```bash > export HCCL_CONNECT_TIMEOUT=600 @@ -435,6 +483,24 @@ epoch: 0.0, current epoch percent: 0.002, step: 200, outpus are (Tensor(shape=[1 ... ``` +#### running on GPU + +```bash +bash scripts/run_distributed_pretrain_for_gpu.sh /path/cn-wiki-128 +``` + +The command above will run in the background, you can view the results the file pretraining_log.txt. After training, you will get some checkpoint files under the LOG* folder by default. The loss value will be achieved as follows: + +```bash +# grep "epoch" LOG*/pretraining_log.txt +epoch: 0.0, current epoch percent: 0.001, step: 100, outpus are (Tensor(shape=[1], dtype=Float32, [ 1.08209e+01]), Tensor(shape=[], dtype=Bool, False), Tensor(shape=[], dtype=Float32, 65536)) +epoch: 0.0, current epoch percent: 0.002, step: 200, outpus are (Tensor(shape=[1], dtype=Float32, [ 1.07566e+01]), Tensor(shape=[], dtype=Bool, False), Tensor(shape=[], dtype=Float32, 65536)) +... +epoch: 0.0, current epoch percent: 0.001, step: 100, outpus are (Tensor(shape=[1], dtype=Float32, [ 1.08218e+01]), Tensor(shape=[], dtype=Bool, False), Tensor(shape=[], dtype=Float32, 65536)) +epoch: 0.0, current epoch percent: 0.002, step: 200, outpus are (Tensor(shape=[1], dtype=Float32, [ 1.07770e+01]), Tensor(shape=[], dtype=Bool, False), Tensor(shape=[], dtype=Float32, 65536)) +... +``` + > **Attention** This will bind the processor cores according to the `device_num` and total processor numbers. If you don't expect to run pretraining with binding processor cores, remove the operations about `taskset` in `scripts/ascend_distributed_launcher/get_distribute_pretrain_cmd.py` ## [Evaluation Process](#contents) @@ -495,57 +561,57 @@ The result will be as follows: | Parameters | Ascend | GPU | | -------------------------- | ---------------------------------------------------------- | ------------------------- | | Model Version | BERT_base | BERT_base | -| Resource | Ascend 910, cpu:2.60GHz 192cores, memory:755G | NV SMX2 V100-32G | +| Resource | Ascend 910, cpu:2.60GHz 192cores, memory:755G | NV SMX2 V100-16G, cpu: Intel(R) Xeon(R) Platinum 8160 CPU @2.10GHz, memory: 256G | | uploaded Date | 08/22/2020 | 05/06/2020 | | MindSpore Version | 1.0.0 | 1.0.0 | -| Dataset | cn-wiki-128(4000w) | ImageNet | -| Training Parameters | src/config.py | src/config.py | -| Optimizer | Lamb | Momentum | -| Loss Function | SoftmaxCrossEntropy | SoftmaxCrossEntropy | -| outputs | probability | | -| Epoch | 40 | | | -| Batch_size | 256*8 | 130(8P) | | -| Loss | 1.7 | 1.913 | -| Speed | 340ms/step | 1.913 | -| Total time | 73h | | -| Params (M) | 110M | | -| Checkpoint for Fine tuning | 1.2G(.ckpt file) | | -| Scripts | [BERT_base](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/nlp/bert) | | - -| Parameters | Ascend | GPU | -| -------------------------- | ---------------------------------------------------------- | ------------------------- | -| Model Version | BERT_NEZHA | BERT_NEZHA | -| Resource | Ascend 910, cpu:2.60GHz 192cores, memory:755G | NV SMX2 V100-32G | -| uploaded Date | 08/20/2020 | 05/06/2020 | -| MindSpore Version | 1.0.0 | 1.0.0 | -| Dataset | cn-wiki-128(4000w) | ImageNet | +| Dataset | cn-wiki-128(4000w) | cn-wiki-128(4000w) | | Training Parameters | src/config.py | src/config.py | -| Optimizer | Lamb | Momentum | +| Optimizer | Lamb | AdamWeightDecay | | Loss Function | SoftmaxCrossEntropy | SoftmaxCrossEntropy | -| outputs | probability | | -| Epoch | 40 | | | -| Batch_size | 96*8 | 130(8P) | -| Loss | 1.7 | 1.913 | -| Speed | 360ms/step | 1.913 | -| Total time | 200h | | -| Params (M) | 340M | | -| Checkpoint for Fine tuning | 3.2G(.ckpt file) | | -| Scripts | [BERT_NEZHA](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/nlp/bert) | | +| outputs | probability | probability | +| Epoch | 40 | 40 | +| Batch_size | 256*8 | 32*8 | +| Loss | 1.7 | 1.7 | +| Speed | 340ms/step | 290ms/step | +| Total time | 73h | 610H | +| Params (M) | 110M | 110M | +| Checkpoint for Fine tuning | 1.2G(.ckpt file) | 1.2G(.ckpt file) | +| Scripts | [BERT_base](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/nlp/bert) | [BERT_base](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/nlp/bert) | + +| Parameters | Ascend | +| -------------------------- | ---------------------------------------------------------- | +| Model Version | BERT_NEZHA | +| Resource | Ascend 910, cpu:2.60GHz 192cores, memory:755G | +| uploaded Date | 08/20/2020 | +| MindSpore Version | 1.0.0 | +| Dataset | cn-wiki-128(4000w) | +| Training Parameters | src/config.py | +| Optimizer | Lamb | +| Loss Function | SoftmaxCrossEntropy | +| outputs | probability | +| Epoch | 40 | +| Batch_size | 96*8 | +| Loss | 1.7 | +| Speed | 360ms/step | +| Total time | 200h | +| Params (M) | 340M | +| Checkpoint for Fine tuning | 3.2G(.ckpt file) | +| Scripts | [BERT_NEZHA](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/nlp/bert) | #### Inference Performance -| Parameters | Ascend | GPU | -| -------------------------- | ----------------------------- | ------------------------- | -| Model Version | | | -| Resource | Ascend 910 | NV SMX2 V100-32G | -| uploaded Date | 08/22/2020 | 05/22/2020 | -| MindSpore Version | 1.0.0 | 1.0.0 | -| Dataset | cola, 1.2W | ImageNet, 1.2W | -| batch_size | 32(1P) | 130(8P) | -| Accuracy | 0.588986 | ACC1[72.07%] ACC5[90.90%] | -| Speed | 59.25ms/step | | -| Total time | 15min | | -| Model for inference | 1.2G(.ckpt file) | | +| Parameters | Ascend | +| -------------------------- | ----------------------------- | +| Model Version | | +| Resource | Ascend 910 | +| uploaded Date | 08/22/2020 | +| MindSpore Version | 1.0.0 | +| Dataset | cola, 1.2W | +| batch_size | 32(1P) | +| Accuracy | 0.588986 | +| Speed | 59.25ms/step | +| Total time | 15min | +| Model for inference | 1.2G(.ckpt file) | # [Description of Random Situation](#contents)