diff --git a/mindspore/nn/layer/math.py b/mindspore/nn/layer/math.py index 135bff22ad..a625f77164 100644 --- a/mindspore/nn/layer/math.py +++ b/mindspore/nn/layer/math.py @@ -36,14 +36,14 @@ class ReduceLogSumExp(Cell): The dtype of the tensor to be reduced is number. Args: - keep_dims (bool): If true, keep these reduced dimensions and the length is 1. - If false, don't keep these dimensions. - Default : False. + keep_dims (bool): If True, keep these reduced dimensions and the length is 1. + If False, don't keep these dimensions. + Default : False. + axis (Union[int, tuple(int), list(int)]) - The dimensions to reduce. Default: (), reduce all dimensions. + Only constant value is allowed. Inputs: - **input_x** (Tensor[Number]) - The input tensor. With float16 or float32 data type. - - **axis** (Union[int, tuple(int), list(int)]) - The dimensions to reduce. Default: (), reduce all dimensions. - Only constant value is allowed. Outputs: Tensor, has the same dtype as the `input_x`. @@ -57,8 +57,8 @@ class ReduceLogSumExp(Cell): Examples: >>> input_x = Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32)) - >>> op = nn.ReduceLogSumExp(keep_dims=True) - >>> output = op(input_x, 1) + >>> op = nn.ReduceLogSumExp(keep_dims=True, 1) + >>> output = op(input_x) >>> output.shape (3, 1, 5, 6) """