diff --git a/mindspore/ccsrc/parallel/step_auto_parallel.cc b/mindspore/ccsrc/parallel/step_auto_parallel.cc index aee4247755..c3e3f5893e 100644 --- a/mindspore/ccsrc/parallel/step_auto_parallel.cc +++ b/mindspore/ccsrc/parallel/step_auto_parallel.cc @@ -346,8 +346,6 @@ bool IsAutoParallelCareNode(const CNodePtr &cnode) { } OperatorInfoPtr CreateTheOperatorInfo(const PrimitivePtr &prim, const CNodePtr &cnode) { - MS_EXCEPTION_IF_NULL(prim); - MS_EXCEPTION_IF_NULL(cnode); auto attrs = prim->attrs(); std::vector shape_list = ExtractShape(cnode); if (shape_list.empty()) { @@ -383,8 +381,8 @@ OperatorInfoPtr CreateTheOperatorInfo(const PrimitivePtr &prim, const CNodePtr & operator_info->set_outputs_dtype(cnode->Type()); operator_info->set_cnode(cnode); // If no strategy has been configured for this operator, then candidate strategies are generated for - // auto-strategy searching, if this primitive is Cast, we ignore the user-specified strategy - if (!StrategyFound(attrs) || prim->name() == CAST) { + // auto-strategy searching + if (!StrategyFound(attrs)) { // Compute split_flag_list_, indicating which input has batch dimension. This is ONLY used for preparation for // BatchParallelInfo operator operator_info->ComputeBatchSplitFlagList(); diff --git a/mindspore/ccsrc/parallel/step_parallel.cc b/mindspore/ccsrc/parallel/step_parallel.cc index 2d948679d7..927acea705 100644 --- a/mindspore/ccsrc/parallel/step_parallel.cc +++ b/mindspore/ccsrc/parallel/step_parallel.cc @@ -370,12 +370,15 @@ bool IsParallelCareNode(const CNodePtr& cnode) { if (prim == nullptr) { return false; } + auto attrs = prim->attrs(); if (IsInBlackList(prim)) { MS_LOG(INFO) << "Parallel don't care node: " << prim->name(); return false; } - if ((prim->name() == CAST) && (cnode->operator_info() == nullptr)) { - return false; + if ((prim->name() == CAST)) { + if ((!attrs.count(STRATEGY)) && (cnode->operator_info() == nullptr)) { + return false; + } } return cnode->in_forward_flag(); @@ -645,13 +648,6 @@ LossNodeInfo GetLossNodeInfo(const AnfNodePtr& loss_node) { MS_EXCEPTION_IF_NULL(pre_node); LossNodeInfo node_info; - // return -> cast - auto pre_cnode = pre_node->cast(); - MS_EXCEPTION_IF_NULL(pre_cnode); - auto pre_prim = GetValueNode(pre_cnode->input(0)); - if (pre_prim->name() == CAST && pre_cnode->operator_info() == nullptr) { - pre_node = pre_cnode->input(1); - } // return -> loss if (pre_node == loss_node) { @@ -1947,13 +1943,6 @@ CNodePtr FindLossCNode(const FuncGraphPtr& func_graph) { MS_EXCEPTION_IF_NULL(current_value); PrimitivePtr current_prim = current_value->value()->cast(); MS_EXCEPTION_IF_NULL(current_prim); - // return -> cast - if (current_prim->name() == CAST && pre_cnode->operator_info() == nullptr) { - pre_cnode = pre_cnode->input(1)->cast(); - MS_EXCEPTION_IF_NULL(pre_cnode); - current_prim = GetValueNode(pre_cnode->input(0)); - } - // notice: the GetNext op has not input if (INVALID_LOSS_OPS.find(current_prim->name()) != INVALID_LOSS_OPS.end()) { MS_LOG(INFO) << "The loss is: " << current_prim->name(); diff --git a/tests/ut/python/parallel/test_element_wise_function.py b/tests/ut/python/parallel/test_element_wise_function.py index a917dce9b6..dfcebdc5ab 100644 --- a/tests/ut/python/parallel/test_element_wise_function.py +++ b/tests/ut/python/parallel/test_element_wise_function.py @@ -272,32 +272,3 @@ def test_cast_before_mirror3(): y = Tensor(np.ones([32, 64]), dtype=ms.float16) b = Tensor(np.ones([64, 64]), dtype=ms.float32) _executor.compile(net, x, y, b) - - -def test_mul_two_cast(): - class Net(nn.Cell): - def __init__(self, strategy1, strategy2, strategy3): - super().__init__() - self.mul = P.Mul().set_strategy(strategy1) - self.mul2 = P.Mul().set_strategy(strategy2) - self.cast = P.Cast().set_strategy(strategy3) - self.cast2 = P.Cast().set_strategy(strategy3) - - def construct(self, x, y, b): - out = self.mul(x, y) - out = self.mul2(out, b) - out = self.cast(out, ms.int32) - out = self.cast2(out, ms.bool_) - return out - - context.set_auto_parallel_context(device_num=8, global_rank=0) - strategy1 = ((2, 2), (2, 2)) - strategy2 = ((8, 1), (8, 1)) - strategy3 = ((8, 1), ) - net = GradWrap(Net(strategy1, strategy2, strategy3)) - context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") - - x = Tensor(np.ones([128, 32]), dtype=ms.float32) - y = Tensor(np.ones([128, 32]), dtype=ms.float32) - b = Tensor(np.ones([128, 32]), dtype=ms.float32) - _executor.compile(net, x, y, b)