diff --git a/tests/st/probability/distribution/test_categorical_gpu.py b/tests/st/probability/distribution/test_categorical_gpu.py new file mode 100644 index 0000000000..c306e7f633 --- /dev/null +++ b/tests/st/probability/distribution/test_categorical_gpu.py @@ -0,0 +1,63 @@ +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +"""test cases for categorical distribution""" + +import numpy as np +import mindspore.context as context +import mindspore.nn as nn +import mindspore.nn.probability.distribution as msd +from mindspore import Tensor +from mindspore import dtype as ms +import pytest + +context.set_context(mode=context.GRAPH_MODE, device_target="GPU") + +def generate_probs(seed, shape): + np.random.seed(seed) + probs = np.random.dirichlet(np.ones(shape[3]), size=1) + for _ in range(shape[0] - 1): + for _ in range(shape[1] - 1): + for _ in range(shape[2] - 1): + probs = np.vstack(((np.random.dirichlet(np.ones(shape[3]), size=1)), probs)) + probs = np.array([probs, probs]) + probs = np.array([probs, probs]) + return probs + + +class CategoricalProb(nn.Cell): + def __init__(self, probs, seed=10, dtype=ms.int32, name='Categorical'): + super().__init__() + self.b = msd.Categorical(probs, seed, dtype, name) + + def construct(self, value, probs=None): + out1 = self.b.prob(value, probs) + out2 = self.b.log_prob(value, probs) + out3 = self.b.cdf(value, probs) + out4 = self.b.log_cdf(value, probs) + out5 = self.b.survival_function(value, probs) + out6 = self.b.log_survival(value, probs) + return out1, out2, out3, out4, out5, out6 + + + +@pytest.mark.level0 +@pytest.mark.platform_x86_gpu_training +@pytest.mark.env_onecard +def test_probability_categorical_prob_cdf_probs_none(): + probs = None + probs1 = generate_probs(3, shape=(2, 2, 1, 64)) + value = np.random.randint(0, 63, size=(64)).astype(np.float32) + net = CategoricalProb(probs) + net(Tensor(value), Tensor(probs1)) diff --git a/tests/st/probability/distribution/test_cauchy_pynative.py b/tests/st/probability/distribution/test_cauchy_pynative.py new file mode 100644 index 0000000000..13082d7cd8 --- /dev/null +++ b/tests/st/probability/distribution/test_cauchy_pynative.py @@ -0,0 +1,72 @@ +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +"""test cases for cauchy distribution""" + +import numpy as np +import mindspore.context as context +import mindspore.nn as nn +import mindspore.nn.probability.distribution as msd +from mindspore import Tensor +from mindspore import dtype as ms +import pytest + +context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend") + + +class CauchyMean(nn.Cell): + def __init__(self, loc, scale, seed=10, dtype=ms.float32, name='Cauchy'): + super().__init__() + self.b = msd.Cauchy(loc, scale, seed, dtype, name) + + def construct(self): + out4 = self.b.entropy() + return out4 + + + +@pytest.mark.level0 +@pytest.mark.platform_arm_ascend_training +@pytest.mark.env_onecard +def test_probability_cauchy_mean_loc_scale_rand_2_ndarray(): + loc = np.random.randn(1024, 512, 7, 7).astype(np.float32) + scale = np.random.uniform(0.0001, 100, size=(1024, 512, 7, 7)).astype(np.float32) + net = CauchyMean(loc, scale) + net() + + +class CauchyProb(nn.Cell): + def __init__(self, loc, scale, seed=10, dtype=ms.float32, name='Cauchy'): + super().__init__() + self.b = msd.Cauchy(loc, scale, seed, dtype, name) + + def construct(self, value): + out1 = self.b.prob(value) + out2 = self.b.log_prob(value) + out3 = self.b.cdf(value) + out4 = self.b.log_cdf(value) + out5 = self.b.survival_function(value) + out6 = self.b.log_survival(value) + return out1, out2, out3, out4, out5, out6 + + +@pytest.mark.level0 +@pytest.mark.platform_arm_ascend_training +@pytest.mark.env_onecard +def test_probability_cauchy_prob_cdf_loc_scale_rand_4_ndarray(): + loc = np.random.randn(1024, 512, 7, 7).astype(np.float32) + scale = np.random.uniform(0.0001, 100, size=(1024, 512, 7, 7)).astype(np.float32) + value = np.random.randn(1024, 512, 7, 7).astype(np.float32) + net = CauchyProb(loc, scale) + net(Tensor(value)) diff --git a/tests/st/probability/distribution/test_gamma_pynative.py b/tests/st/probability/distribution/test_gamma_pynative.py new file mode 100644 index 0000000000..fc80249dfe --- /dev/null +++ b/tests/st/probability/distribution/test_gamma_pynative.py @@ -0,0 +1,49 @@ +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +"""test cases for gamma distribution""" + +import numpy as np +import mindspore.context as context +import mindspore.nn as nn +import mindspore.nn.probability.distribution as msd +from mindspore import dtype as ms +import pytest + +context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend") + + +class GammaMean(nn.Cell): + def __init__(self, concentration, rate, seed=10, dtype=ms.float32, name='Gamma'): + super().__init__() + self.b = msd.Gamma(concentration, rate, seed, dtype, name) + + def construct(self): + out1 = self.b.mean() + out2 = self.b.mode() + out3 = self.b.var() + out4 = self.b.entropy() + out5 = self.b.sd() + return out1, out2, out3, out4, out5 + + + +@pytest.mark.level0 +@pytest.mark.platform_arm_ascend_training +@pytest.mark.env_onecard +def test_probability_gamma_mean_cdoncentration_rate_rand_2_ndarray(): + concentration = np.random.uniform(0.0001, 100, size=(1024, 512, 7, 7)).astype(np.float32) + rate = np.random.uniform(0.0001, 100, size=(1024, 512, 7, 7)).astype(np.float32) + net = GammaMean(concentration, rate) + net()