diff --git a/tests/ut/cpp/dataset/c_api_samplers_test.cc b/tests/ut/cpp/dataset/c_api_samplers_test.cc index e0060eae89..edfc6317ea 100644 --- a/tests/ut/cpp/dataset/c_api_samplers_test.cc +++ b/tests/ut/cpp/dataset/c_api_samplers_test.cc @@ -76,8 +76,8 @@ TEST_F(MindDataTestPipeline, TestImageFolderWithSamplers) { uint64_t i = 0; while (row.size() != 0) { i++; - // auto image = row["image"]; - // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); + auto image = row["image"]; + MS_LOG(INFO) << "Tensor image shape: " << image.Shape(); iter->GetNextRow(&row); } @@ -239,7 +239,8 @@ TEST_F(MindDataTestPipeline, TestDistributedSamplerSuccess2) { // num_shards=4, shard_id=0, shuffle=false, num_samplers=0, seed=0, offset=-1, even_dist=true Sampler *sampler = new DistributedSampler(4, 0, false, 0, 0, -1, true); - EXPECT_NE(sampler, nullptr); + // Note that with new, we have to explicitly delete the allocated object as shown below. + // Note: No need to check for output after calling API class constructor // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; @@ -261,6 +262,9 @@ TEST_F(MindDataTestPipeline, TestDistributedSamplerSuccess2) { EXPECT_EQ(i, 11); iter->Stop(); + + // Delete allocated objects with raw pointers + delete sampler; } TEST_F(MindDataTestPipeline, TestDistributedSamplerSuccess3) { @@ -318,7 +322,8 @@ TEST_F(MindDataTestPipeline, TestDistributedSamplerFail2) { // num_shards=4, shard_id=0, shuffle=false, num_samplers=0, seed=0, offset=5, even_dist=true // offset=5 which is greater than num_shards=4 --> will fail later Sampler *sampler = new DistributedSampler(4, 0, false, 0, 0, 5, false); - EXPECT_NE(sampler, nullptr); + // Note that with new, we have to explicitly delete the allocated object as shown below. + // Note: No need to check for output after calling API class constructor // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; @@ -328,6 +333,9 @@ TEST_F(MindDataTestPipeline, TestDistributedSamplerFail2) { // Iterate will fail because sampler is not initiated successfully. std::shared_ptr iter = ds->CreateIterator(); EXPECT_EQ(iter, nullptr); + + // Delete allocated objects with raw pointers + delete sampler; } TEST_F(MindDataTestPipeline, TestDistributedSamplerFail3) { diff --git a/tests/ut/cpp/dataset/c_api_vision_a_to_q_test.cc b/tests/ut/cpp/dataset/c_api_vision_a_to_q_test.cc index 3f86dfb5dc..029934488d 100644 --- a/tests/ut/cpp/dataset/c_api_vision_a_to_q_test.cc +++ b/tests/ut/cpp/dataset/c_api_vision_a_to_q_test.cc @@ -42,7 +42,7 @@ TEST_F(MindDataTestPipeline, TestAutoContrastSuccess1) { // Create auto contrast object with default values std::shared_ptr auto_contrast(new vision::AutoContrast()); - EXPECT_NE(auto_contrast, nullptr); + // Note: No need to check for output after calling API class constructor // Create a Map operation on ds ds = ds->Map({auto_contrast}); @@ -65,8 +65,8 @@ TEST_F(MindDataTestPipeline, TestAutoContrastSuccess1) { uint64_t i = 0; while (row.size() != 0) { i++; - // auto image = row["image"]; - // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); + auto image = row["image"]; + MS_LOG(INFO) << "Tensor image shape: " << image.Shape(); iter->GetNextRow(&row); } @@ -91,7 +91,7 @@ TEST_F(MindDataTestPipeline, TestAutoContrastSuccess2) { // Create auto contrast object std::shared_ptr auto_contrast(new vision::AutoContrast(10, {10, 20})); - EXPECT_NE(auto_contrast, nullptr); + // Note: No need to check for output after calling API class constructor // Create a Map operation on ds ds = ds->Map({auto_contrast}); @@ -114,8 +114,8 @@ TEST_F(MindDataTestPipeline, TestAutoContrastSuccess2) { uint64_t i = 0; while (row.size() != 0) { i++; - // auto image = row["image"]; - // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); + auto image = row["image"]; + MS_LOG(INFO) << "Tensor image shape: " << image.Shape(); iter->GetNextRow(&row); } @@ -125,18 +125,6 @@ TEST_F(MindDataTestPipeline, TestAutoContrastSuccess2) { iter->Stop(); } -TEST_F(MindDataTestPipeline, TestAutoContrastFail) { - // FIXME: For error tests, need to check for failure from CreateIterator execution - MS_LOG(INFO) << "Doing MindDataTestPipeline-TestAutoContrastFail with invalid params."; - // Testing invalid cutoff < 0 - std::shared_ptr auto_contrast1(new vision::AutoContrast(-1.0)); - // FIXME: Need to check error Status is returned during CreateIterator - EXPECT_NE(auto_contrast1, nullptr); - // Testing invalid cutoff > 100 - std::shared_ptr auto_contrast2(new vision::AutoContrast(110.0, {10, 20})); - EXPECT_NE(auto_contrast2, nullptr); -} - TEST_F(MindDataTestPipeline, TestCenterCrop) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCenterCrop with single integer input."; @@ -152,7 +140,7 @@ TEST_F(MindDataTestPipeline, TestCenterCrop) { // Create centre crop object with square crop std::shared_ptr centre_out1(new vision::CenterCrop({30})); - EXPECT_NE(centre_out1, nullptr); + // Note: No need to check for output after calling API class constructor // Create a Map operation on ds ds = ds->Map({centre_out1}); @@ -175,8 +163,8 @@ TEST_F(MindDataTestPipeline, TestCenterCrop) { uint64_t i = 0; while (row.size() != 0) { i++; - // auto image = row["image"]; - // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); + auto image = row["image"]; + MS_LOG(INFO) << "Tensor image shape: " << image.Shape(); iter->GetNextRow(&row); } @@ -186,41 +174,6 @@ TEST_F(MindDataTestPipeline, TestCenterCrop) { iter->Stop(); } -TEST_F(MindDataTestPipeline, TestCenterCropFail) { - MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCenterCrop with invalid parameters."; - // FIXME: For error tests, need to check for failure from CreateIterator execution - - // center crop height value negative - std::shared_ptr center_crop1(new mindspore::dataset::vision::CenterCrop({-32, 32})); - EXPECT_NE(center_crop1, nullptr); - // center crop width value negative - std::shared_ptr center_crop2(new mindspore::dataset::vision::CenterCrop({32, -32})); - EXPECT_NE(center_crop2, nullptr); - // 0 value would result in nullptr - std::shared_ptr center_crop3(new mindspore::dataset::vision::CenterCrop({0, 32})); - EXPECT_NE(center_crop3, nullptr); - // center crop with 3 values - std::shared_ptr center_crop4(new mindspore::dataset::vision::CenterCrop({10, 20, 30})); - EXPECT_NE(center_crop4, nullptr); -} - -TEST_F(MindDataTestPipeline, TestCropFail) { - MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCrop with invalid parameters."; - // FIXME: For error tests, need to check for failure from CreateIterator execution - // wrong width - std::shared_ptr crop1(new mindspore::dataset::vision::Crop({0, 0}, {32, -32})); - EXPECT_NE(crop1, nullptr); - // wrong height - std::shared_ptr crop2(new mindspore::dataset::vision::Crop({0, 0}, {-32, -32})); - EXPECT_NE(crop2, nullptr); - // zero height - std::shared_ptr crop3(new mindspore::dataset::vision::Crop({0, 0}, {0, 32})); - EXPECT_NE(crop3, nullptr); - // negative coordinates - std::shared_ptr crop4(new mindspore::dataset::vision::Crop({-1, 0}, {32, 32})); - EXPECT_NE(crop4, nullptr); -} - TEST_F(MindDataTestPipeline, TestCutMixBatchSuccess1) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCutMixBatchSuccess1."; // Testing CutMixBatch on a batch of CHW images @@ -233,7 +186,7 @@ TEST_F(MindDataTestPipeline, TestCutMixBatchSuccess1) { // Create objects for the tensor ops std::shared_ptr hwc_to_chw = std::make_shared(); - EXPECT_NE(hwc_to_chw, nullptr); + // Note: No need to check for output after calling API class constructor // Create a Map operation on ds ds = ds->Map({hwc_to_chw}, {"image"}); @@ -244,10 +197,9 @@ TEST_F(MindDataTestPipeline, TestCutMixBatchSuccess1) { ds = ds->Batch(batch_size); EXPECT_NE(ds, nullptr); - // Create objects for the tensor ops std::shared_ptr one_hot_op = std::make_shared(number_of_classes); - EXPECT_NE(one_hot_op, nullptr); + // Note: No need to check for output after calling API class constructor // Create a Map operation on ds ds = ds->Map({one_hot_op}, {"label"}); @@ -255,7 +207,7 @@ TEST_F(MindDataTestPipeline, TestCutMixBatchSuccess1) { std::shared_ptr cutmix_batch_op = std::make_shared(mindspore::dataset::ImageBatchFormat::kNCHW, 1.0, 1.0); - EXPECT_NE(cutmix_batch_op, nullptr); + // Note: No need to check for output after calling API class constructor // Create a Map operation on ds ds = ds->Map({cutmix_batch_op}, {"image", "label"}); @@ -273,16 +225,15 @@ TEST_F(MindDataTestPipeline, TestCutMixBatchSuccess1) { uint64_t i = 0; while (row.size() != 0) { i++; - // auto image = row["image"]; - // auto label = row["label"]; - // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); - // MS_LOG(INFO) << "Label shape: " << label->shape(); - // EXPECT_EQ(image->shape().AsVector().size() == 4 && batch_size == image->shape()[0] && 3 == image->shape()[1] && - // 32 == image->shape()[2] && 32 == image->shape()[3], - // true); - // EXPECT_EQ(label->shape().AsVector().size() == 2 && batch_size == label->shape()[0] && - // number_of_classes == label->shape()[1], - // true); + auto image = row["image"]; + auto label = row["label"]; + MS_LOG(INFO) << "Tensor image shape: " << image.Shape(); + MS_LOG(INFO) << "Label shape: " << label.Shape(); + EXPECT_EQ(image.Shape().size() == 4 && batch_size == image.Shape()[0] && 3 == image.Shape()[1] && + 32 == image.Shape()[2] && 32 == image.Shape()[3], + true); + EXPECT_EQ(label.Shape().size() == 2 && batch_size == label.Shape()[0] && number_of_classes == label.Shape()[1], + true); iter->GetNextRow(&row); } @@ -309,14 +260,15 @@ TEST_F(MindDataTestPipeline, TestCutMixBatchSuccess2) { // Create objects for the tensor ops std::shared_ptr one_hot_op = std::make_shared(number_of_classes); - EXPECT_NE(one_hot_op, nullptr); + // Note: No need to check for output after calling API class constructor // Create a Map operation on ds ds = ds->Map({one_hot_op}, {"label"}); EXPECT_NE(ds, nullptr); - std::shared_ptr cutmix_batch_op = std::make_shared(mindspore::dataset::ImageBatchFormat::kNHWC); - EXPECT_NE(cutmix_batch_op, nullptr); + std::shared_ptr cutmix_batch_op = + std::make_shared(mindspore::dataset::ImageBatchFormat::kNHWC); + // Note: No need to check for output after calling API class constructor // Create a Map operation on ds ds = ds->Map({cutmix_batch_op}, {"image", "label"}); @@ -334,16 +286,16 @@ TEST_F(MindDataTestPipeline, TestCutMixBatchSuccess2) { uint64_t i = 0; while (row.size() != 0) { i++; - // auto image = row["image"]; - // auto label = row["label"]; - // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); - // MS_LOG(INFO) << "Label shape: " << label->shape(); - // EXPECT_EQ(image->shape().AsVector().size() == 4 && batch_size == image->shape()[0] && 32 == image->shape()[1] && - // 32 == image->shape()[2] && 3 == image->shape()[3], - // true); - // EXPECT_EQ(label->shape().AsVector().size() == 2 && batch_size == label->shape()[0] && - // number_of_classes == label->shape()[1], - // true); + auto image = row["image"]; + auto label = row["label"]; + MS_LOG(INFO) << "Tensor image shape: " << image.Shape(); + MS_LOG(INFO) << "Label shape: " << label.Shape(); + EXPECT_EQ(image.Shape().size() == 4 && batch_size == image.Shape()[0] && 32 == image.Shape()[1] && + 32 == image.Shape()[2] && 3 == image.Shape()[3], + true); + EXPECT_EQ(label.Shape().size() == 2 && batch_size == label.Shape()[0] && number_of_classes == label.Shape()[1], + true); + iter->GetNextRow(&row); } @@ -368,7 +320,7 @@ TEST_F(MindDataTestPipeline, TestCutMixBatchFail1) { // Create objects for the tensor ops std::shared_ptr one_hot_op = std::make_shared(10); - EXPECT_NE(one_hot_op, nullptr); + // Note: No need to check for output after calling API class constructor // Create a Map operation on ds ds = ds->Map({one_hot_op}, {"label"}); @@ -377,7 +329,7 @@ TEST_F(MindDataTestPipeline, TestCutMixBatchFail1) { // Create CutMixBatch operation with invalid input, alpha<0 std::shared_ptr cutmix_batch_op = std::make_shared(mindspore::dataset::ImageBatchFormat::kNHWC, -1, 0.5); - EXPECT_NE(cutmix_batch_op, nullptr); + // Note: No need to check for output after calling API class constructor // Create a Map operation on ds ds = ds->Map({cutmix_batch_op}); @@ -403,7 +355,7 @@ TEST_F(MindDataTestPipeline, TestCutMixBatchFail2) { // Create objects for the tensor ops std::shared_ptr one_hot_op = std::make_shared(10); - EXPECT_NE(one_hot_op, nullptr); + // Note: No need to check for output after calling API class constructor // Create a Map operation on ds ds = ds->Map({one_hot_op}, {"label"}); @@ -412,7 +364,7 @@ TEST_F(MindDataTestPipeline, TestCutMixBatchFail2) { // Create CutMixBatch operation with invalid input, prob<0 std::shared_ptr cutmix_batch_op = std::make_shared(mindspore::dataset::ImageBatchFormat::kNHWC, 1, -0.5); - EXPECT_NE(cutmix_batch_op, nullptr); + // Note: No need to check for output after calling API class constructor // Create a Map operation on ds ds = ds->Map({cutmix_batch_op}); @@ -438,7 +390,7 @@ TEST_F(MindDataTestPipeline, TestCutMixBatchFail3) { // Create objects for the tensor ops std::shared_ptr one_hot_op = std::make_shared(10); - EXPECT_NE(one_hot_op, nullptr); + // Note: No need to check for output after calling API class constructor // Create a Map operation on ds ds = ds->Map({one_hot_op}, {"label"}); @@ -447,7 +399,7 @@ TEST_F(MindDataTestPipeline, TestCutMixBatchFail3) { // Create CutMixBatch operation with invalid input, alpha=0 (boundary case) std::shared_ptr cutmix_batch_op = std::make_shared(mindspore::dataset::ImageBatchFormat::kNHWC, 0.0, 0.5); - EXPECT_NE(cutmix_batch_op, nullptr); + // Note: No need to check for output after calling API class constructor // Create a Map operation on ds ds = ds->Map({cutmix_batch_op}); @@ -472,7 +424,7 @@ TEST_F(MindDataTestPipeline, TestCutMixBatchFail4) { // Create objects for the tensor ops std::shared_ptr one_hot_op = std::make_shared(10); - EXPECT_NE(one_hot_op, nullptr); + // Note: No need to check for output after calling API class constructor // Create a Map operation on ds ds = ds->Map({one_hot_op}, {"label"}); @@ -481,7 +433,7 @@ TEST_F(MindDataTestPipeline, TestCutMixBatchFail4) { // Create CutMixBatch operation with invalid input, prob>1 std::shared_ptr cutmix_batch_op = std::make_shared(mindspore::dataset::ImageBatchFormat::kNHWC, 1, 1.5); - EXPECT_NE(cutmix_batch_op, nullptr); + // Note: No need to check for output after calling API class constructor // Create a Map operation on ds ds = ds->Map({cutmix_batch_op}); @@ -492,30 +444,6 @@ TEST_F(MindDataTestPipeline, TestCutMixBatchFail4) { EXPECT_EQ(iter, nullptr); } -TEST_F(MindDataTestPipeline, TestCutOutFail1) { - MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCutOutFail1 with invalid parameters."; - // FIXME: For error tests, need to check for failure from CreateIterator execution - // Create object for the tensor op - // Invalid negative length - std::shared_ptr cutout_op = std::make_shared(-10); - EXPECT_NE(cutout_op, nullptr); - // Invalid negative number of patches - cutout_op = std::make_shared(10, -1); - EXPECT_NE(cutout_op, nullptr); -} - -TEST_F(MindDataTestPipeline, TestCutOutFail2) { - MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCutOutFail2 with invalid params, boundary cases."; - // FIXME: For error tests, need to check for failure from CreateIterator execution - // Create object for the tensor op - // Invalid zero length - std::shared_ptr cutout_op = std::make_shared(0); - EXPECT_NE(cutout_op, nullptr); - // Invalid zero number of patches - cutout_op = std::make_shared(10, 0); - EXPECT_NE(cutout_op, nullptr); -} - TEST_F(MindDataTestPipeline, TestCutOut) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCutOut."; @@ -531,10 +459,8 @@ TEST_F(MindDataTestPipeline, TestCutOut) { // Create objects for the tensor ops std::shared_ptr cut_out1 = std::make_shared(30, 5); - EXPECT_NE(cut_out1, nullptr); - std::shared_ptr cut_out2 = std::make_shared(30); - EXPECT_NE(cut_out2, nullptr); + // Note: No need to check for output after calling API class constructor // Create a Map operation on ds ds = ds->Map({cut_out1, cut_out2}); @@ -557,8 +483,8 @@ TEST_F(MindDataTestPipeline, TestCutOut) { uint64_t i = 0; while (row.size() != 0) { i++; - // auto image = row["image"]; - // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); + auto image = row["image"]; + MS_LOG(INFO) << "Tensor image shape: " << image.Shape(); iter->GetNextRow(&row); } @@ -583,6 +509,7 @@ TEST_F(MindDataTestPipeline, TestDecode) { // Create Decode object vision::Decode decode = vision::Decode(true); + // Note: No need to check for output after calling API class constructor // Create a Map operation on ds ds = ds->Map({decode}); @@ -605,8 +532,8 @@ TEST_F(MindDataTestPipeline, TestDecode) { uint64_t i = 0; while (row.size() != 0) { i++; - // auto image = row["image"]; - // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); + auto image = row["image"]; + MS_LOG(INFO) << "Tensor image shape: " << image.Shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 20); @@ -630,7 +557,7 @@ TEST_F(MindDataTestPipeline, TestHwcToChw) { // Create objects for the tensor ops std::shared_ptr channel_swap = std::make_shared(); - EXPECT_NE(channel_swap, nullptr); + // Note: No need to check for output after calling API class constructor // Create a Map operation on ds ds = ds->Map({channel_swap}); @@ -653,12 +580,12 @@ TEST_F(MindDataTestPipeline, TestHwcToChw) { uint64_t i = 0; while (row.size() != 0) { i++; - // auto image = row["image"]; - // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); - // check if the image is in NCHW - // EXPECT_EQ(batch_size == image->shape()[0] && 3 == image->shape()[1] && 2268 == image->shape()[2] && - // 4032 == image->shape()[3], - // true); + auto image = row["image"]; + MS_LOG(INFO) << "Tensor image shape: " << image.Shape(); + // Check if the image is in NCHW + EXPECT_EQ( + batch_size == image.Shape()[0] && 3 == image.Shape()[1] && 2268 == image.Shape()[2] && 4032 == image.Shape()[3], + true); iter->GetNextRow(&row); } EXPECT_EQ(i, 20); @@ -677,7 +604,7 @@ TEST_F(MindDataTestPipeline, TestInvert) { // Create objects for the tensor ops std::shared_ptr invert_op = std::make_shared(); - EXPECT_NE(invert_op, nullptr); + // Note: No need to check for output after calling API class constructor // Create a Map operation on ds ds = ds->Map({invert_op}); @@ -695,8 +622,8 @@ TEST_F(MindDataTestPipeline, TestInvert) { uint64_t i = 0; while (row.size() != 0) { i++; - // auto image = row["image"]; - // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); + auto image = row["image"]; + MS_LOG(INFO) << "Tensor image shape: " << image.Shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 20); @@ -707,7 +634,7 @@ TEST_F(MindDataTestPipeline, TestInvert) { TEST_F(MindDataTestPipeline, TestMixUpBatchFail1) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestMixUpBatchFail1 with negative alpha parameter."; - // FIXME: For error tests, need to check for failure from CreateIterator execution + // Create a Cifar10 Dataset std::string folder_path = datasets_root_path_ + "/testCifar10Data/"; std::shared_ptr ds = Cifar10(folder_path, "all", std::make_shared(false, 10)); @@ -720,7 +647,7 @@ TEST_F(MindDataTestPipeline, TestMixUpBatchFail1) { // Create objects for the tensor ops std::shared_ptr one_hot_op = std::make_shared(10); - EXPECT_NE(one_hot_op, nullptr); + // Note: No need to check for output after calling API class constructor // Create a Map operation on ds ds = ds->Map({one_hot_op}, {"label"}); @@ -728,7 +655,7 @@ TEST_F(MindDataTestPipeline, TestMixUpBatchFail1) { // Create MixUpBatch operation with invalid input, alpha<0 std::shared_ptr mixup_batch_op = std::make_shared(-1); - EXPECT_NE(mixup_batch_op, nullptr); + // Note: No need to check for output after calling API class constructor // Create a Map operation on ds ds = ds->Map({mixup_batch_op}); @@ -741,7 +668,7 @@ TEST_F(MindDataTestPipeline, TestMixUpBatchFail1) { TEST_F(MindDataTestPipeline, TestMixUpBatchFail2) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestMixUpBatchFail2 with zero alpha parameter."; - // FIXME: For error tests, need to check for failure from CreateIterator execution + // Create a Cifar10 Dataset std::string folder_path = datasets_root_path_ + "/testCifar10Data/"; std::shared_ptr ds = Cifar10(folder_path, "all", std::make_shared(false, 10)); @@ -754,7 +681,7 @@ TEST_F(MindDataTestPipeline, TestMixUpBatchFail2) { // Create objects for the tensor ops std::shared_ptr one_hot_op = std::make_shared(10); - EXPECT_NE(one_hot_op, nullptr); + // Note: No need to check for output after calling API class constructor // Create a Map operation on ds ds = ds->Map({one_hot_op}, {"label"}); @@ -762,7 +689,7 @@ TEST_F(MindDataTestPipeline, TestMixUpBatchFail2) { // Create MixUpBatch operation with invalid input, alpha<0 (boundary case) std::shared_ptr mixup_batch_op = std::make_shared(0.0); - EXPECT_NE(mixup_batch_op, nullptr); + // Note: No need to check for output after calling API class constructor // Create a Map operation on ds ds = ds->Map({mixup_batch_op}); @@ -788,14 +715,14 @@ TEST_F(MindDataTestPipeline, TestMixUpBatchSuccess1) { // Create objects for the tensor ops std::shared_ptr one_hot_op = std::make_shared(10); - EXPECT_NE(one_hot_op, nullptr); + // Note: No need to check for output after calling API class constructor // Create a Map operation on ds ds = ds->Map({one_hot_op}, {"label"}); EXPECT_NE(ds, nullptr); std::shared_ptr mixup_batch_op = std::make_shared(2.0); - EXPECT_NE(mixup_batch_op, nullptr); + // Note: No need to check for output after calling API class constructor // Create a Map operation on ds ds = ds->Map({mixup_batch_op}, {"image", "label"}); @@ -813,8 +740,8 @@ TEST_F(MindDataTestPipeline, TestMixUpBatchSuccess1) { uint64_t i = 0; while (row.size() != 0) { i++; - // auto image = row["image"]; - // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); + auto image = row["image"]; + MS_LOG(INFO) << "Tensor image shape: " << image.Shape(); iter->GetNextRow(&row); } @@ -839,14 +766,14 @@ TEST_F(MindDataTestPipeline, TestMixUpBatchSuccess2) { // Create objects for the tensor ops std::shared_ptr one_hot_op = std::make_shared(10); - EXPECT_NE(one_hot_op, nullptr); + // Note: No need to check for output after calling API class constructor // Create a Map operation on ds ds = ds->Map({one_hot_op}, {"label"}); EXPECT_NE(ds, nullptr); std::shared_ptr mixup_batch_op = std::make_shared(); - EXPECT_NE(mixup_batch_op, nullptr); + // Note: No need to check for output after calling API class constructor // Create a Map operation on ds ds = ds->Map({mixup_batch_op}, {"image", "label"}); @@ -864,8 +791,8 @@ TEST_F(MindDataTestPipeline, TestMixUpBatchSuccess2) { uint64_t i = 0; while (row.size() != 0) { i++; - // auto image = row["image"]; - // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); + auto image = row["image"]; + MS_LOG(INFO) << "Tensor image shape: " << image.Shape(); iter->GetNextRow(&row); } @@ -890,7 +817,7 @@ TEST_F(MindDataTestPipeline, TestNormalize) { // Create objects for the tensor ops std::shared_ptr normalize(new vision::Normalize({121.0, 115.0, 0.0}, {70.0, 68.0, 71.0})); - EXPECT_NE(normalize, nullptr); + // Note: No need to check for output after calling API class constructor // Create a Map operation on ds ds = ds->Map({normalize}); @@ -913,8 +840,8 @@ TEST_F(MindDataTestPipeline, TestNormalize) { uint64_t i = 0; while (row.size() != 0) { i++; - // auto image = row["image"]; - // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); + auto image = row["image"]; + MS_LOG(INFO) << "Tensor image shape: " << image.Shape(); iter->GetNextRow(&row); } @@ -924,35 +851,6 @@ TEST_F(MindDataTestPipeline, TestNormalize) { iter->Stop(); } -TEST_F(MindDataTestPipeline, TestNormalizeFail) { - MS_LOG(INFO) << "Doing MindDataTestPipeline-TestNormalizeFail with invalid parameters."; - // FIXME: For error tests, need to check for failure from CreateIterator execution - // std value at 0.0 - std::shared_ptr normalize1( - new mindspore::dataset::vision::Normalize({121.0, 115.0, 100.0}, {0.0, 68.0, 71.0})); - EXPECT_NE(normalize1, nullptr); - // mean out of range - std::shared_ptr normalize2( - new mindspore::dataset::vision::Normalize({121.0, 0.0, 100.0}, {256.0, 68.0, 71.0})); - EXPECT_NE(normalize2, nullptr); - // mean out of range - std::shared_ptr normalize3( - new mindspore::dataset::vision::Normalize({256.0, 0.0, 100.0}, {70.0, 68.0, 71.0})); - EXPECT_NE(normalize3, nullptr); - // mean out of range - std::shared_ptr normalize4( - new mindspore::dataset::vision::Normalize({-1.0, 0.0, 100.0}, {70.0, 68.0, 71.0})); - EXPECT_NE(normalize4, nullptr); - // normalize with 2 values (not 3 values) for mean - std::shared_ptr normalize5( - new mindspore::dataset::vision::Normalize({121.0, 115.0}, {70.0, 68.0, 71.0})); - EXPECT_NE(normalize5, nullptr); - // normalize with 2 values (not 3 values) for standard deviation - std::shared_ptr normalize6( - new mindspore::dataset::vision::Normalize({121.0, 115.0, 100.0}, {68.0, 71.0})); - EXPECT_NE(normalize6, nullptr); -} - TEST_F(MindDataTestPipeline, TestNormalizePad) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestNormalizePad."; @@ -969,7 +867,7 @@ TEST_F(MindDataTestPipeline, TestNormalizePad) { // Create objects for the tensor ops std::shared_ptr normalizepad( new vision::NormalizePad({121.0, 115.0, 100.0}, {70.0, 68.0, 71.0}, "float32")); - EXPECT_NE(normalizepad, nullptr); + // Note: No need to check for output after calling API class constructor // Create a Map operation on ds ds = ds->Map({normalizepad}); @@ -987,9 +885,10 @@ TEST_F(MindDataTestPipeline, TestNormalizePad) { uint64_t i = 0; while (row.size() != 0) { i++; - // auto image = row["image"]; - // EXPECT_EQ(image->shape()[2], 4); - // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); + auto image = row["image"]; + MS_LOG(INFO) << "Tensor image shape: " << image.Shape(); + EXPECT_EQ(image.Shape()[2], 4); + iter->GetNextRow(&row); } @@ -999,27 +898,6 @@ TEST_F(MindDataTestPipeline, TestNormalizePad) { iter->Stop(); } -TEST_F(MindDataTestPipeline, TestNormalizePadFail) { - MS_LOG(INFO) << "Doing MindDataTestPipeline-TestNormalizePadFail with invalid parameters."; - // FIXME: For error tests, need to check for failure from CreateIterator execution - // std value at 0.0 - std::shared_ptr normalizepad1( - new mindspore::dataset::vision::NormalizePad({121.0, 115.0, 100.0}, {0.0, 68.0, 71.0})); - EXPECT_NE(normalizepad1, nullptr); - // normalizepad with 2 values (not 3 values) for mean - std::shared_ptr normalizepad2( - new mindspore::dataset::vision::NormalizePad({121.0, 115.0}, {70.0, 68.0, 71.0})); - EXPECT_NE(normalizepad2, nullptr); - // normalizepad with 2 values (not 3 values) for standard deviation - std::shared_ptr normalizepad3( - new mindspore::dataset::vision::NormalizePad({121.0, 115.0, 100.0}, {68.0, 71.0})); - EXPECT_NE(normalizepad3, nullptr); - // normalizepad with invalid dtype - std::shared_ptr normalizepad4( - new mindspore::dataset::vision::NormalizePad({121.0, 115.0, 100.0}, {68.0, 71.0, 71.0}, "123")); - EXPECT_NE(normalizepad4, nullptr); -} - TEST_F(MindDataTestPipeline, TestPad) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestPad."; @@ -1035,13 +913,9 @@ TEST_F(MindDataTestPipeline, TestPad) { // Create objects for the tensor ops std::shared_ptr pad_op1(new vision::Pad({1, 2, 3, 4}, {0}, BorderType::kSymmetric)); - EXPECT_NE(pad_op1, nullptr); - std::shared_ptr pad_op2(new vision::Pad({1}, {1, 1, 1}, BorderType::kEdge)); - EXPECT_NE(pad_op2, nullptr); - std::shared_ptr pad_op3(new vision::Pad({1, 4})); - EXPECT_NE(pad_op3, nullptr); + // Note: No need to check for output after calling API class constructor // Create a Map operation on ds ds = ds->Map({pad_op1, pad_op2, pad_op3}); @@ -1064,8 +938,8 @@ TEST_F(MindDataTestPipeline, TestPad) { uint64_t i = 0; while (row.size() != 0) { i++; - // auto image = row["image"]; - // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); + auto image = row["image"]; + MS_LOG(INFO) << "Tensor image shape: " << image.Shape(); iter->GetNextRow(&row); } diff --git a/tests/ut/cpp/dataset/c_api_vision_bounding_box_augment_test.cc b/tests/ut/cpp/dataset/c_api_vision_bounding_box_augment_test.cc index 272d273f1d..3b3354749e 100644 --- a/tests/ut/cpp/dataset/c_api_vision_bounding_box_augment_test.cc +++ b/tests/ut/cpp/dataset/c_api_vision_bounding_box_augment_test.cc @@ -30,7 +30,8 @@ TEST_F(MindDataTestPipeline, TestBoundingBoxAugmentSuccess1Shr) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestBoundingBoxAugmentSuccess1Shr."; // Create an VOC Dataset std::string folder_path = datasets_root_path_ + "/testVOC2012_2"; - std::shared_ptr ds = VOC(folder_path, "Detection", "train", {}, true, std::make_shared(0, 3)); + std::shared_ptr ds = + VOC(folder_path, "Detection", "train", {}, true, std::make_shared(0, 3)); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops @@ -54,8 +55,8 @@ TEST_F(MindDataTestPipeline, TestBoundingBoxAugmentSuccess1Shr) { uint64_t i = 0; while (row.size() != 0) { i++; - // auto image = row["image"]; - // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); + auto image = row["image"]; + MS_LOG(INFO) << "Tensor image shape: " << image.Shape(); iter->GetNextRow(&row); } @@ -68,11 +69,13 @@ TEST_F(MindDataTestPipeline, TestBoundingBoxAugmentSuccess2Auto) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestBoundingBoxAugmentSuccess2Auto."; // Create an VOC Dataset std::string folder_path = datasets_root_path_ + "/testVOC2012_2"; - std::shared_ptr ds = VOC(folder_path, "Detection", "train", {}, true, std::make_shared(0, 3)); + std::shared_ptr ds = + VOC(folder_path, "Detection", "train", {}, true, std::make_shared(0, 3)); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops // Use auto for raw pointers + // Note that with auto and new, we have to explicitly delete the allocated object as shown below. auto random_rotation_op(new vision::RandomRotation({90.0})); auto bound_box_augment_op(new vision::BoundingBoxAugment({random_rotation_op}, 1.0)); @@ -92,21 +95,26 @@ TEST_F(MindDataTestPipeline, TestBoundingBoxAugmentSuccess2Auto) { uint64_t i = 0; while (row.size() != 0) { i++; - // auto image = row["image"]; - // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); + auto image = row["image"]; + MS_LOG(INFO) << "Tensor image shape: " << image.Shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 3); // Manually terminate the pipeline iter->Stop(); + + // Delete allocated objects with raw pointers + delete random_rotation_op; + delete bound_box_augment_op; } TEST_F(MindDataTestPipeline, TestBoundingBoxAugmentSuccess3Obj) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestBoundingBoxAugmentSuccess3Obj."; // Create an VOC Dataset std::string folder_path = datasets_root_path_ + "/testVOC2012_2"; - std::shared_ptr ds = VOC(folder_path, "Detection", "train", {}, true, std::make_shared(0, 3)); + std::shared_ptr ds = + VOC(folder_path, "Detection", "train", {}, true, std::make_shared(0, 3)); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops @@ -130,8 +138,8 @@ TEST_F(MindDataTestPipeline, TestBoundingBoxAugmentSuccess3Obj) { uint64_t i = 0; while (row.size() != 0) { i++; - // auto image = row["image"]; - // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); + auto image = row["image"]; + MS_LOG(INFO) << "Tensor image shape: " << image.Shape(); iter->GetNextRow(&row); } @@ -145,7 +153,8 @@ TEST_F(MindDataTestPipeline, TestBoundingBoxAugmentFail1) { // Create an VOC Dataset std::string folder_path = datasets_root_path_ + "/testVOC2012_2"; - std::shared_ptr ds = VOC(folder_path, "Detection", "train", {}, true, std::make_shared(0, 3)); + std::shared_ptr ds = + VOC(folder_path, "Detection", "train", {}, true, std::make_shared(0, 3)); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops @@ -169,7 +178,8 @@ TEST_F(MindDataTestPipeline, TestBoundingBoxAugmentFail2) { // Create an VOC Dataset std::string folder_path = datasets_root_path_ + "/testVOC2012_2"; - std::shared_ptr ds = VOC(folder_path, "Detection", "train", {}, true, std::make_shared(0, 3)); + std::shared_ptr ds = + VOC(folder_path, "Detection", "train", {}, true, std::make_shared(0, 3)); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops @@ -193,7 +203,8 @@ TEST_F(MindDataTestPipeline, TestBoundingBoxAugmentFail3) { // Create an VOC Dataset std::string folder_path = datasets_root_path_ + "/testVOC2012_2"; - std::shared_ptr ds = VOC(folder_path, "Detection", "train", {}, true, std::make_shared(0, 3)); + std::shared_ptr ds = + VOC(folder_path, "Detection", "train", {}, true, std::make_shared(0, 3)); EXPECT_NE(ds, nullptr); // Create BoundingBoxAugment op with invalid nullptr transform @@ -214,7 +225,8 @@ TEST_F(MindDataTestPipeline, TestBoundingBoxAugmentFail4) { // Create an VOC Dataset std::string folder_path = datasets_root_path_ + "/testVOC2012_2"; - std::shared_ptr ds = VOC(folder_path, "Detection", "train", {}, true, std::make_shared(0, 3)); + std::shared_ptr ds = + VOC(folder_path, "Detection", "train", {}, true, std::make_shared(0, 3)); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops diff --git a/tests/ut/cpp/dataset/c_api_vision_r_to_z_test.cc b/tests/ut/cpp/dataset/c_api_vision_r_to_z_test.cc index fc6f9855af..5c6859051d 100644 --- a/tests/ut/cpp/dataset/c_api_vision_r_to_z_test.cc +++ b/tests/ut/cpp/dataset/c_api_vision_r_to_z_test.cc @@ -46,11 +46,11 @@ TEST_F(MindDataTestPipeline, TestRescaleSucess1) { // Create objects for the tensor ops std::shared_ptr rescale(new mindspore::dataset::vision::Rescale(1.0, 0.0)); - EXPECT_NE(rescale, nullptr); + // Note: No need to check for output after calling API class constructor // Convert to the same type std::shared_ptr type_cast(new transforms::TypeCast("uint8")); - EXPECT_NE(type_cast, nullptr); + // Note: No need to check for output after calling API class constructor ds = ds->Map({rescale, type_cast}, {"image"}); EXPECT_NE(ds, nullptr); @@ -81,7 +81,7 @@ TEST_F(MindDataTestPipeline, TestRescaleSucess2) { // Create objects for the tensor ops std::shared_ptr rescale(new mindspore::dataset::vision::Rescale(1.0 / 255, 1.0)); - EXPECT_NE(rescale, nullptr); + // Note: No need to check for output after calling API class constructor ds = ds->Map({rescale}, {"image"}); EXPECT_NE(ds, nullptr); @@ -98,8 +98,8 @@ TEST_F(MindDataTestPipeline, TestRescaleSucess2) { uint64_t i = 0; while (row.size() != 0) { i++; - // auto image = row["image"]; - // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); + auto image = row["image"]; + MS_LOG(INFO) << "Tensor image shape: " << image.Shape(); iter->GetNextRow(&row); } @@ -109,14 +109,6 @@ TEST_F(MindDataTestPipeline, TestRescaleSucess2) { iter->Stop(); } -TEST_F(MindDataTestPipeline, TestRescaleFail) { - MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRescaleFail with invalid params."; - // FIXME: For error tests, need to check for failure from CreateIterator execution - // incorrect negative rescale parameter - std::shared_ptr rescale(new mindspore::dataset::vision::Rescale(-1.0, 0.0)); - EXPECT_NE(rescale, nullptr); -} - TEST_F(MindDataTestPipeline, TestResize1) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestResize1 with single integer input."; // Create an ImageFolder Dataset @@ -131,7 +123,7 @@ TEST_F(MindDataTestPipeline, TestResize1) { // Create resize object with single integer input std::shared_ptr resize_op(new vision::Resize({30})); - EXPECT_NE(resize_op, nullptr); + // Note: No need to check for output after calling API class constructor // Create a Map operation on ds ds = ds->Map({resize_op}); @@ -154,8 +146,8 @@ TEST_F(MindDataTestPipeline, TestResize1) { uint64_t i = 0; while (row.size() != 0) { i++; - // auto image = row["image"]; - // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); + auto image = row["image"]; + MS_LOG(INFO) << "Tensor image shape: " << image.Shape(); iter->GetNextRow(&row); } @@ -165,33 +157,18 @@ TEST_F(MindDataTestPipeline, TestResize1) { iter->Stop(); } -TEST_F(MindDataTestPipeline, TestResizeFail) { - MS_LOG(INFO) << "Doing MindDataTestPipeline-TestResize with invalid parameters."; - // FIXME: For error tests, need to check for failure from CreateIterator execution - // negative resize value - std::shared_ptr resize_op1(new mindspore::dataset::vision::Resize({30, -30})); - EXPECT_NE(resize_op1, nullptr); - // zero resize value - std::shared_ptr resize_op2(new mindspore::dataset::vision::Resize({0, 30})); - EXPECT_NE(resize_op2, nullptr); - // resize with 3 values - std::shared_ptr resize_op3(new mindspore::dataset::vision::Resize({30, 20, 10})); - EXPECT_NE(resize_op3, nullptr); -} - TEST_F(MindDataTestPipeline, TestResizeWithBBoxSuccess) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestResizeWithBBoxSuccess."; // Create an VOC Dataset std::string folder_path = datasets_root_path_ + "/testVOC2012_2"; - std::shared_ptr ds = VOC(folder_path, "Detection", "train", {}, true, std::make_shared(0, 3)); + std::shared_ptr ds = + VOC(folder_path, "Detection", "train", {}, true, std::make_shared(0, 3)); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr resize_with_bbox_op(new vision::ResizeWithBBox({30})); - EXPECT_NE(resize_with_bbox_op, nullptr); - std::shared_ptr resize_with_bbox_op1(new vision::ResizeWithBBox({30, 30})); - EXPECT_NE(resize_with_bbox_op1, nullptr); + // Note: No need to check for output after calling API class constructor // Create a Map operation on ds ds = ds->Map({resize_with_bbox_op, resize_with_bbox_op1}, {"image", "bbox"}, {"image", "bbox"}, {"image", "bbox"}); @@ -209,8 +186,8 @@ TEST_F(MindDataTestPipeline, TestResizeWithBBoxSuccess) { uint64_t i = 0; while (row.size() != 0) { i++; - // auto image = row["image"]; - // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); + auto image = row["image"]; + MS_LOG(INFO) << "Tensor image shape: " << image.Shape(); iter->GetNextRow(&row); } @@ -218,38 +195,3 @@ TEST_F(MindDataTestPipeline, TestResizeWithBBoxSuccess) { // Manually terminate the pipeline iter->Stop(); } - -TEST_F(MindDataTestPipeline, TestResizeWithBBoxFail) { - MS_LOG(INFO) << "Doing MindDataTestPipeline-TestResizeWithBBoxFail with invalid parameters."; - // FIXME: For error tests, need to check for failure from CreateIterator execution - // Testing negative resize value - std::shared_ptr resize_with_bbox_op(new vision::ResizeWithBBox({10, -10})); - EXPECT_NE(resize_with_bbox_op, nullptr); - // Testing negative resize value - std::shared_ptr resize_with_bbox_op1(new vision::ResizeWithBBox({-10})); - EXPECT_NE(resize_with_bbox_op1, nullptr); - // Testinig zero resize value - std::shared_ptr resize_with_bbox_op2(new vision::ResizeWithBBox({0, 10})); - EXPECT_NE(resize_with_bbox_op2, nullptr); - // Testing resize with 3 values - std::shared_ptr resize_with_bbox_op3(new vision::ResizeWithBBox({10, 10, 10})); - EXPECT_NE(resize_with_bbox_op3, nullptr); -} - -TEST_F(MindDataTestPipeline, TestVisionOperationName) { - MS_LOG(INFO) << "Doing MindDataTestPipeline-TestVisionOperationName."; - - std::string correct_name; - - // Create object for the tensor op, and check the name - /* FIXME - Update and move test to IR level - std::shared_ptr random_vertical_flip_op = vision::RandomVerticalFlip(0.5); - correct_name = "RandomVerticalFlip"; - EXPECT_EQ(correct_name, random_vertical_flip_op->Name()); - - // Create object for the tensor op, and check the name - std::shared_ptr softDvpp_decode_resize_jpeg_op = vision::SoftDvppDecodeResizeJpeg({1, 1}); - correct_name = "SoftDvppDecodeResizeJpeg"; - EXPECT_EQ(correct_name, softDvpp_decode_resize_jpeg_op->Name()); - */ -} diff --git a/tests/ut/cpp/dataset/c_api_vision_random_subselect_policy_test.cc b/tests/ut/cpp/dataset/c_api_vision_random_subselect_policy_test.cc index c518578dbf..dade6f8edd 100644 --- a/tests/ut/cpp/dataset/c_api_vision_random_subselect_policy_test.cc +++ b/tests/ut/cpp/dataset/c_api_vision_random_subselect_policy_test.cc @@ -66,8 +66,8 @@ TEST_F(MindDataTestPipeline, TestRandomSelectSubpolicySuccess1Shr) { uint64_t i = 0; while (row.size() != 0) { i++; - // auto image = row["image"]; - // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); + auto image = row["image"]; + MS_LOG(INFO) << "Tensor image shape: " << image.Shape(); iter->GetNextRow(&row); } @@ -87,6 +87,7 @@ TEST_F(MindDataTestPipeline, TestRandomSelectSubpolicySuccess2Auto) { // Create objects for the tensor ops // Use auto for raw pointers + // Note that with auto and new, we have to explicitly delete the allocated object as shown below. // Valid case: TensorTransform is not null and probability is between (0,1) auto invert_op(new vision::Invert()); auto equalize_op(new vision::Equalize()); @@ -118,8 +119,8 @@ TEST_F(MindDataTestPipeline, TestRandomSelectSubpolicySuccess2Auto) { uint64_t i = 0; while (row.size() != 0) { i++; - // auto image = row["image"]; - // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); + auto image = row["image"]; + MS_LOG(INFO) << "Tensor image shape: " << image.Shape(); iter->GetNextRow(&row); } @@ -127,6 +128,12 @@ TEST_F(MindDataTestPipeline, TestRandomSelectSubpolicySuccess2Auto) { // Manually terminate the pipeline iter->Stop(); + + // Delete allocated objects with raw pointers + delete invert_op; + delete equalize_op; + delete resize_op; + delete random_select_subpolicy_op; } TEST_F(MindDataTestPipeline, TestRandomSelectSubpolicySuccess3Obj) { @@ -169,8 +176,8 @@ TEST_F(MindDataTestPipeline, TestRandomSelectSubpolicySuccess3Obj) { uint64_t i = 0; while (row.size() != 0) { i++; - // auto image = row["image"]; - // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); + auto image = row["image"]; + MS_LOG(INFO) << "Tensor image shape: " << image.Shape(); iter->GetNextRow(&row); } @@ -221,8 +228,8 @@ TEST_F(MindDataTestPipeline, TestRandomSelectSubpolicySuccess4MultiPolicy) { uint64_t i = 0; while (row.size() != 0) { i++; - // auto image = row["image"]; - // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); + auto image = row["image"]; + MS_LOG(INFO) << "Tensor image shape: " << image.Shape(); iter->GetNextRow(&row); } diff --git a/tests/ut/cpp/dataset/c_api_vision_soft_dvpp_test.cc b/tests/ut/cpp/dataset/c_api_vision_soft_dvpp_test.cc index 5240f713e1..3aecad8085 100644 --- a/tests/ut/cpp/dataset/c_api_vision_soft_dvpp_test.cc +++ b/tests/ut/cpp/dataset/c_api_vision_soft_dvpp_test.cc @@ -36,9 +36,9 @@ TEST_F(MindDataTestPipeline, TestSoftDvppDecodeRandomCropResizeJpegSuccess1) { EXPECT_NE(ds, nullptr); // Create objects for the tensor ops - std::shared_ptr soft_dvpp_decode_random_crop_resize_jpeg(new - vision::SoftDvppDecodeRandomCropResizeJpeg({500})); - EXPECT_NE(soft_dvpp_decode_random_crop_resize_jpeg, nullptr); + std::shared_ptr soft_dvpp_decode_random_crop_resize_jpeg( + new vision::SoftDvppDecodeRandomCropResizeJpeg({500})); + // Note: No need to check for output after calling API class constructor // Create a Map operation on ds ds = ds->Map({soft_dvpp_decode_random_crop_resize_jpeg}, {"image"}); @@ -78,9 +78,9 @@ TEST_F(MindDataTestPipeline, TestSoftDvppDecodeRandomCropResizeJpegSuccess2) { EXPECT_NE(ds, nullptr); // Create objects for the tensor ops - std::shared_ptr soft_dvpp_decode_random_crop_resize_jpeg(new - vision::SoftDvppDecodeRandomCropResizeJpeg({500, 600}, {0.25, 0.75}, {0.5, 1.25}, 20)); - EXPECT_NE(soft_dvpp_decode_random_crop_resize_jpeg, nullptr); + std::shared_ptr soft_dvpp_decode_random_crop_resize_jpeg( + new vision::SoftDvppDecodeRandomCropResizeJpeg({500, 600}, {0.25, 0.75}, {0.5, 1.25}, 20)); + // Note: No need to check for output after calling API class constructor // Create a Map operation on ds ds = ds->Map({soft_dvpp_decode_random_crop_resize_jpeg}, {"image"}); @@ -110,50 +110,6 @@ TEST_F(MindDataTestPipeline, TestSoftDvppDecodeRandomCropResizeJpegSuccess2) { iter->Stop(); } -TEST_F(MindDataTestPipeline, TestSoftDvppDecodeRandomCropResizeJpegFail) { - MS_LOG(INFO) << "Doing MindDataTestPipeline-TestSoftDvppDecodeRandomCropResizeJpegFail with incorrect parameters."; - // FIXME: For error tests, need to check for failure from CreateIterator execution - // SoftDvppDecodeRandomCropResizeJpeg: size must only contain positive integers - auto soft_dvpp_decode_random_crop_resize_jpeg1(new vision::SoftDvppDecodeRandomCropResizeJpeg({-500, 600})); - EXPECT_NE(soft_dvpp_decode_random_crop_resize_jpeg1, nullptr); - - // SoftDvppDecodeRandomCropResizeJpeg: size must only contain positive integers - auto soft_dvpp_decode_random_crop_resize_jpeg2(new vision::SoftDvppDecodeRandomCropResizeJpeg({-500})); - EXPECT_NE(soft_dvpp_decode_random_crop_resize_jpeg2, nullptr); - - // SoftDvppDecodeRandomCropResizeJpeg: size must be a vector of one or two values - auto soft_dvpp_decode_random_crop_resize_jpeg3(new vision::SoftDvppDecodeRandomCropResizeJpeg({500, 600, 700})); - EXPECT_NE(soft_dvpp_decode_random_crop_resize_jpeg3, nullptr); - - // SoftDvppDecodeRandomCropResizeJpeg: scale must be greater than or equal to 0 - auto soft_dvpp_decode_random_crop_resize_jpeg4(new vision::SoftDvppDecodeRandomCropResizeJpeg({500}, {-0.1, 0.9})); - EXPECT_NE(soft_dvpp_decode_random_crop_resize_jpeg4, nullptr); - - // SoftDvppDecodeRandomCropResizeJpeg: scale must be in the format of (min, max) - auto soft_dvpp_decode_random_crop_resize_jpeg5(new vision::SoftDvppDecodeRandomCropResizeJpeg({500}, {0.6, 0.2})); - EXPECT_NE(soft_dvpp_decode_random_crop_resize_jpeg5, nullptr); - - // SoftDvppDecodeRandomCropResizeJpeg: scale must be a vector of two values - auto soft_dvpp_decode_random_crop_resize_jpeg6(new vision::SoftDvppDecodeRandomCropResizeJpeg({500}, {0.5, 0.6, 0.7})); - EXPECT_NE(soft_dvpp_decode_random_crop_resize_jpeg6, nullptr); - - // SoftDvppDecodeRandomCropResizeJpeg: ratio must be greater than or equal to 0 - auto soft_dvpp_decode_random_crop_resize_jpeg7(new vision::SoftDvppDecodeRandomCropResizeJpeg({500}, {0.5, 0.9}, {-0.2, 0.4})); - EXPECT_NE(soft_dvpp_decode_random_crop_resize_jpeg7, nullptr); - - // SoftDvppDecodeRandomCropResizeJpeg: ratio must be in the format of (min, max) - auto soft_dvpp_decode_random_crop_resize_jpeg8(new vision::SoftDvppDecodeRandomCropResizeJpeg({500}, {0.5, 0.9}, {0.4, 0.2})); - EXPECT_NE(soft_dvpp_decode_random_crop_resize_jpeg8, nullptr); - - // SoftDvppDecodeRandomCropResizeJpeg: ratio must be a vector of two values - auto soft_dvpp_decode_random_crop_resize_jpeg9(new vision::SoftDvppDecodeRandomCropResizeJpeg({500}, {0.5, 0.9}, {0.1, 0.2, 0.3})); - EXPECT_NE(soft_dvpp_decode_random_crop_resize_jpeg9, nullptr); - - // SoftDvppDecodeRandomCropResizeJpeg: max_attempts must be greater than or equal to 1 - auto soft_dvpp_decode_random_crop_resize_jpeg10(new vision::SoftDvppDecodeRandomCropResizeJpeg({500}, {0.5, 0.9}, {0.1, 0.2}, 0)); - EXPECT_NE(soft_dvpp_decode_random_crop_resize_jpeg10, nullptr); -} - TEST_F(MindDataTestPipeline, TestSoftDvppDecodeResizeJpegSuccess1) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestSoftDvppDecodeResizeJpegSuccess1 with single integer input."; // Create an ImageFolder Dataset @@ -168,7 +124,7 @@ TEST_F(MindDataTestPipeline, TestSoftDvppDecodeResizeJpegSuccess1) { // Create SoftDvppDecodeResizeJpeg object with single integer input std::shared_ptr soft_dvpp_decode_resize_jpeg_op(new vision::SoftDvppDecodeResizeJpeg({1134})); - EXPECT_NE(soft_dvpp_decode_resize_jpeg_op, nullptr); + // Note: No need to check for output after calling API class constructor // Create a Map operation on ds ds = ds->Map({soft_dvpp_decode_resize_jpeg_op}); @@ -206,7 +162,7 @@ TEST_F(MindDataTestPipeline, TestSoftDvppDecodeResizeJpegSuccess2) { // Create SoftDvppDecodeResizeJpeg object with single integer input std::shared_ptr soft_dvpp_decode_resize_jpeg_op(new vision::SoftDvppDecodeResizeJpeg({100, 200})); - EXPECT_NE(soft_dvpp_decode_resize_jpeg_op, nullptr); + // Note: No need to check for output after calling API class constructor // Create a Map operation on ds ds = ds->Map({soft_dvpp_decode_resize_jpeg_op}); @@ -234,23 +190,3 @@ TEST_F(MindDataTestPipeline, TestSoftDvppDecodeResizeJpegSuccess2) { // Manually terminate the pipeline iter->Stop(); } - -TEST_F(MindDataTestPipeline, TestSoftDvppDecodeResizeJpegFail) { - MS_LOG(INFO) << "Doing MindDataTestPipeline-TestSoftDvppDecodeResizeJpegFail with incorrect size."; - // FIXME: For error tests, need to check for failure from CreateIterator execution - // CSoftDvppDecodeResizeJpeg: size must be a vector of one or two values - std::shared_ptr soft_dvpp_decode_resize_jpeg_op1(new vision::SoftDvppDecodeResizeJpeg({})); - EXPECT_NE(soft_dvpp_decode_resize_jpeg_op1, nullptr); - - // SoftDvppDecodeResizeJpeg: size must be a vector of one or two values - std::shared_ptr soft_dvpp_decode_resize_jpeg_op2(new vision::SoftDvppDecodeResizeJpeg({1, 2, 3})); - EXPECT_NE(soft_dvpp_decode_resize_jpeg_op2, nullptr); - - // SoftDvppDecodeResizeJpeg: size must only contain positive integers - std::shared_ptr soft_dvpp_decode_resize_jpeg_op3(new vision::SoftDvppDecodeResizeJpeg({20, -20})); - EXPECT_NE(soft_dvpp_decode_resize_jpeg_op3, nullptr); - - // SoftDvppDecodeResizeJpeg: size must only contain positive integers - std::shared_ptr soft_dvpp_decode_resize_jpeg_op4(new vision::SoftDvppDecodeResizeJpeg({0})); - EXPECT_NE(soft_dvpp_decode_resize_jpeg_op4, nullptr); -} diff --git a/tests/ut/cpp/dataset/c_api_vision_uniform_aug_test.cc b/tests/ut/cpp/dataset/c_api_vision_uniform_aug_test.cc index be08d169c3..b54de8e0b0 100644 --- a/tests/ut/cpp/dataset/c_api_vision_uniform_aug_test.cc +++ b/tests/ut/cpp/dataset/c_api_vision_uniform_aug_test.cc @@ -63,8 +63,8 @@ TEST_F(MindDataTestPipeline, TestUniformAugWithOps1Shr) { uint64_t i = 0; while (row.size() != 0) { i++; - // auto image = row["image"]; - // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); + auto image = row["image"]; + MS_LOG(INFO) << "Tensor image shape: " << image.Shape(); iter->GetNextRow(&row); } @@ -89,6 +89,7 @@ TEST_F(MindDataTestPipeline, TestUniformAugWithOps2Auto) { // Create objects for the tensor ops // Use auto for raw pointers + // Note that with auto and new, we have to explicitly delete the allocated object as shown below. auto resize_op(new vision::Resize({30, 30})); auto random_crop_op(new vision::RandomCrop({28, 28})); auto center_crop_op(new vision::CenterCrop({16, 16})); @@ -110,8 +111,8 @@ TEST_F(MindDataTestPipeline, TestUniformAugWithOps2Auto) { uint64_t i = 0; while (row.size() != 0) { i++; - // auto image = row["image"]; - // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); + auto image = row["image"]; + MS_LOG(INFO) << "Tensor image shape: " << image.Shape(); iter->GetNextRow(&row); } @@ -119,6 +120,12 @@ TEST_F(MindDataTestPipeline, TestUniformAugWithOps2Auto) { // Manually terminate the pipeline iter->Stop(); + + // Delete allocated objects with raw pointers + delete resize_op; + delete random_crop_op; + delete center_crop_op; + delete uniform_aug_op; } TEST_F(MindDataTestPipeline, TestUniformAugWithOps3Obj) { @@ -157,8 +164,8 @@ TEST_F(MindDataTestPipeline, TestUniformAugWithOps3Obj) { uint64_t i = 0; while (row.size() != 0) { i++; - // auto image = row["image"]; - // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); + auto image = row["image"]; + MS_LOG(INFO) << "Tensor image shape: " << image.Shape(); iter->GetNextRow(&row); } diff --git a/tests/ut/cpp/dataset/ir_vision_test.cc b/tests/ut/cpp/dataset/ir_vision_test.cc index 5e07eb38a0..13ef9bd3f7 100644 --- a/tests/ut/cpp/dataset/ir_vision_test.cc +++ b/tests/ut/cpp/dataset/ir_vision_test.cc @@ -17,9 +17,6 @@ #include #include #include "common/common.h" -#include "minddata/dataset/include/datasets.h" -#include "minddata/dataset/include/transforms.h" -#include "minddata/dataset/include/vision.h" #include "minddata/dataset/kernels/ir/vision/vision_ir.h" using namespace mindspore::dataset; @@ -29,67 +26,345 @@ class MindDataTestIRVision : public UT::DatasetOpTesting { MindDataTestIRVision() = default; }; - -TEST_F(MindDataTestIRVision, TestAutoContrastIRFail1) { - MS_LOG(INFO) << "Doing MindDataTestIRVision-TestAutoContrastIRFail1."; +TEST_F(MindDataTestIRVision, TestAutoContrastFail1) { + MS_LOG(INFO) << "Doing MindDataTestIRVision-TestAutoContrastFail1."; // Testing invalid cutoff < 0 - std::shared_ptr auto_contrast1(new vision::AutoContrastOperation(-1.0,{})); - ASSERT_NE(auto_contrast1, nullptr); - + std::shared_ptr auto_contrast1(new vision::AutoContrastOperation(-1.0, {})); Status rc1 = auto_contrast1->ValidateParams(); EXPECT_ERROR(rc1); // Testing invalid cutoff > 100 std::shared_ptr auto_contrast2(new vision::AutoContrastOperation(110.0, {10, 20})); - ASSERT_NE(auto_contrast2, nullptr); - Status rc2 = auto_contrast2->ValidateParams(); EXPECT_ERROR(rc2); } +TEST_F(MindDataTestIRVision, TestCenterCropFail) { + MS_LOG(INFO) << "Doing MindDataTestIRVision-TestCenterCrop with invalid parameters."; + + Status rc; + + // center crop height value negative + std::shared_ptr center_crop1(new vision::CenterCropOperation({-32, 32})); + rc = center_crop1->ValidateParams(); + EXPECT_ERROR(rc); + + // center crop width value negative + std::shared_ptr center_crop2(new vision::CenterCropOperation({32, -32})); + rc = center_crop2->ValidateParams(); + EXPECT_ERROR(rc); + + // 0 value would result in nullptr + std::shared_ptr center_crop3(new vision::CenterCropOperation({0, 32})); + rc = center_crop3->ValidateParams(); + EXPECT_ERROR(rc); + + // center crop with 3 values + std::shared_ptr center_crop4(new vision::CenterCropOperation({10, 20, 30})); + rc = center_crop4->ValidateParams(); + EXPECT_ERROR(rc); +} + +TEST_F(MindDataTestIRVision, TestCropFail) { + MS_LOG(INFO) << "Doing MindDataTestIRVision-TestCrop with invalid parameters."; + + Status rc; + + // wrong width + std::shared_ptr crop1(new vision::CropOperation({0, 0}, {32, -32})); + rc = crop1->ValidateParams(); + EXPECT_ERROR(rc); + + // wrong height + std::shared_ptr crop2(new vision::CropOperation({0, 0}, {-32, -32})); + rc = crop2->ValidateParams(); + EXPECT_ERROR(rc); + + // zero height + std::shared_ptr crop3(new vision::CropOperation({0, 0}, {0, 32})); + rc = crop3->ValidateParams(); + EXPECT_ERROR(rc); + + // negative coordinates + std::shared_ptr crop4(new vision::CropOperation({-1, 0}, {32, 32})); + rc = crop4->ValidateParams(); + EXPECT_ERROR(rc); +} + +TEST_F(MindDataTestIRVision, TestCutOutFail1) { + MS_LOG(INFO) << "Doing MindDataTestIRVision-TestCutOutFail1 with invalid parameters."; + + Status rc; + + // Create object for the tensor op + // Invalid negative length + std::shared_ptr cutout_op = std::make_shared(-10, 1); + rc = cutout_op->ValidateParams(); + EXPECT_ERROR(rc); + + // Invalid negative number of patches + cutout_op = std::make_shared(10, -1); + rc = cutout_op->ValidateParams(); + EXPECT_ERROR(rc); +} + +TEST_F(MindDataTestIRVision, TestCutOutFail2) { + MS_LOG(INFO) << "Doing MindDataTestIRVision-TestCutOutFail2 with invalid params, boundary cases."; + + Status rc; + + // Create object for the tensor op + // Invalid zero length + std::shared_ptr cutout_op = std::make_shared(0, 1); + rc = cutout_op->ValidateParams(); + EXPECT_ERROR(rc); + + // Invalid zero number of patches + cutout_op = std::make_shared(10, 0); + rc = cutout_op->ValidateParams(); + EXPECT_ERROR(rc); +} + TEST_F(MindDataTestIRVision, TestNormalizeFail) { MS_LOG(INFO) << "Doing MindDataTestIRVision-TestNormalizeFail with invalid parameters."; - // std value at 0.0 - std::shared_ptr normalize1(new vision::NormalizeOperation({121.0, 115.0, 100.0}, {0.0, 68.0, 71.0})); - ASSERT_NE(normalize1, nullptr); + Status rc; - Status rc1 = normalize1->ValidateParams(); - EXPECT_ERROR(rc1); + // std value 0.0 out of range + std::shared_ptr normalize1(new vision::NormalizeOperation({121.0, 115.0, 100.0}, {0.0, 68.0, 71.0})); + rc = normalize1->ValidateParams(); + EXPECT_ERROR(rc); - // mean out of range - std::shared_ptr normalize2(new vision::NormalizeOperation({121.0, 0.0, 100.0}, {256.0, 68.0, 71.0})); - ASSERT_NE(normalize2, nullptr); + // std value 256.0 out of range + std::shared_ptr normalize2( + new vision::NormalizeOperation({121.0, 10.0, 100.0}, {256.0, 68.0, 71.0})); + rc = normalize2->ValidateParams(); + EXPECT_ERROR(rc); - Status rc2 = normalize2->ValidateParams(); - EXPECT_ERROR(rc2); - - // mean out of range + // mean value 256.0 out of range std::shared_ptr normalize3(new vision::NormalizeOperation({256.0, 0.0, 100.0}, {70.0, 68.0, 71.0})); - ASSERT_NE(normalize3, nullptr); - - Status rc3 = normalize3->ValidateParams(); - EXPECT_ERROR(rc3); + rc = normalize3->ValidateParams(); + EXPECT_ERROR(rc); - // mean out of range + // mean value 0.0 out of range std::shared_ptr normalize4(new vision::NormalizeOperation({-1.0, 0.0, 100.0}, {70.0, 68.0, 71.0})); - ASSERT_NE(normalize4, nullptr); - - Status rc4 = normalize4->ValidateParams(); - EXPECT_ERROR(rc4); + rc = normalize4->ValidateParams(); + EXPECT_ERROR(rc); // normalize with 2 values (not 3 values) for mean std::shared_ptr normalize5(new vision::NormalizeOperation({121.0, 115.0}, {70.0, 68.0, 71.0})); - ASSERT_NE(normalize5, nullptr); - - Status rc5 = normalize5->ValidateParams(); - EXPECT_ERROR(rc5); + rc = normalize5->ValidateParams(); + EXPECT_ERROR(rc); // normalize with 2 values (not 3 values) for standard deviation std::shared_ptr normalize6(new vision::NormalizeOperation({121.0, 115.0, 100.0}, {68.0, 71.0})); - ASSERT_NE(normalize6, nullptr); + rc = normalize6->ValidateParams(); + EXPECT_ERROR(rc); +} + +TEST_F(MindDataTestIRVision, TestNormalizePadFail) { + MS_LOG(INFO) << "Doing MindDataTestIRVision-TestNormalizePadFail with invalid parameters."; + + Status rc; + + // std value at 0.0 + std::shared_ptr normalizepad1( + new vision::NormalizePadOperation({121.0, 115.0, 100.0}, {0.0, 68.0, 71.0}, "float32")); + rc = normalizepad1->ValidateParams(); + EXPECT_ERROR(rc); + + // normalizepad with 2 values (not 3 values) for mean + std::shared_ptr normalizepad2( + new vision::NormalizePadOperation({121.0, 115.0}, {70.0, 68.0, 71.0}, "float32")); + rc = normalizepad2->ValidateParams(); + EXPECT_ERROR(rc); + + // normalizepad with 2 values (not 3 values) for standard deviation + std::shared_ptr normalizepad3( + new vision::NormalizePadOperation({121.0, 115.0, 100.0}, {68.0, 71.0}, "float32")); + rc = normalizepad3->ValidateParams(); + EXPECT_ERROR(rc); + + // normalizepad with invalid dtype + std::shared_ptr normalizepad4( + new vision::NormalizePadOperation({121.0, 115.0, 100.0}, {68.0, 71.0, 71.0}, "123")); + rc = normalizepad4->ValidateParams(); + EXPECT_ERROR(rc); +} + +TEST_F(MindDataTestIRVision, TestRescaleFail) { + MS_LOG(INFO) << "Doing MindDataTestIRVision-TestRescaleFail with invalid params."; + + Status rc; + + // incorrect negative rescale parameter + std::shared_ptr rescale(new vision::RescaleOperation(-1.0, 0.0)); + rc = rescale->ValidateParams(); + EXPECT_ERROR(rc); +} + +TEST_F(MindDataTestIRVision, TestResizeFail) { + MS_LOG(INFO) << "Doing MindDataTestIRVision-TestResize with invalid parameters."; + + Status rc; + + // negative resize value + std::shared_ptr resize_op1(new vision::ResizeOperation({30, -30}, InterpolationMode::kLinear)); + rc = resize_op1->ValidateParams(); + EXPECT_ERROR(rc); + + // zero resize value + std::shared_ptr resize_op2(new vision::ResizeOperation({0, 30}, InterpolationMode::kLinear)); + rc = resize_op2->ValidateParams(); + EXPECT_ERROR(rc); + + // resize with 3 values + std::shared_ptr resize_op3(new vision::ResizeOperation({30, 20, 10}, InterpolationMode::kLinear)); + rc = resize_op3->ValidateParams(); + EXPECT_ERROR(rc); +} + +TEST_F(MindDataTestIRVision, TestResizeWithBBoxFail) { + MS_LOG(INFO) << "Doing MindDataTestIRVision-TestResizeWithBBoxFail with invalid parameters."; + + Status rc; + + // Testing negative resize value + std::shared_ptr resize_with_bbox_op( + new vision::ResizeWithBBoxOperation({10, -10}, InterpolationMode::kLinear)); + EXPECT_NE(resize_with_bbox_op, nullptr); + rc = resize_with_bbox_op->ValidateParams(); + EXPECT_ERROR(rc); + + // Testing negative resize value + std::shared_ptr resize_with_bbox_op1( + new vision::ResizeWithBBoxOperation({-10}, InterpolationMode::kLinear)); + EXPECT_NE(resize_with_bbox_op1, nullptr); + rc = resize_with_bbox_op1->ValidateParams(); + EXPECT_ERROR(rc); + + // Testing zero resize value + std::shared_ptr resize_with_bbox_op2( + new vision::ResizeWithBBoxOperation({0, 10}, InterpolationMode::kLinear)); + EXPECT_NE(resize_with_bbox_op2, nullptr); + rc = resize_with_bbox_op2->ValidateParams(); + EXPECT_ERROR(rc); + + // Testing resize with 3 values + std::shared_ptr resize_with_bbox_op3( + new vision::ResizeWithBBoxOperation({10, 10, 10}, InterpolationMode::kLinear)); + EXPECT_NE(resize_with_bbox_op3, nullptr); + rc = resize_with_bbox_op3->ValidateParams(); + EXPECT_ERROR(rc); +} + +TEST_F(MindDataTestIRVision, TestSoftDvppDecodeRandomCropResizeJpegFail) { + MS_LOG(INFO) << "Doing MindDataTestIRVision-TestSoftDvppDecodeRandomCropResizeJpegFail with incorrect parameters."; + + Status rc; + + // SoftDvppDecodeRandomCropResizeJpeg: size must only contain positive integers + std::shared_ptr soft_dvpp_decode_random_crop_resize_jpeg1( + new vision::SoftDvppDecodeRandomCropResizeJpegOperation({-500, 600}, {0.08, 1.0}, {3. / 4., 4. / 3.}, 10)); + rc = soft_dvpp_decode_random_crop_resize_jpeg1->ValidateParams(); + EXPECT_ERROR(rc); + + // SoftDvppDecodeRandomCropResizeJpeg: size must only contain positive integers + std::shared_ptr soft_dvpp_decode_random_crop_resize_jpeg2( + new vision::SoftDvppDecodeRandomCropResizeJpegOperation({-500}, {0.08, 1.0}, {3. / 4., 4. / 3.}, 10)); + rc = soft_dvpp_decode_random_crop_resize_jpeg2->ValidateParams(); + EXPECT_ERROR(rc); + + // SoftDvppDecodeRandomCropResizeJpeg: size must be a vector of one or two values + std::shared_ptr soft_dvpp_decode_random_crop_resize_jpeg3( + new vision::SoftDvppDecodeRandomCropResizeJpegOperation({500, 600, 700}, {0.08, 1.0}, {3. / 4., 4. / 3.}, 10)); + rc = soft_dvpp_decode_random_crop_resize_jpeg3->ValidateParams(); + EXPECT_ERROR(rc); + + // SoftDvppDecodeRandomCropResizeJpeg: scale must be greater than or equal to 0 + std::shared_ptr soft_dvpp_decode_random_crop_resize_jpeg4( + new vision::SoftDvppDecodeRandomCropResizeJpegOperation({500}, {-0.1, 0.9}, {3. / 4., 4. / 3.}, 1)); + rc = soft_dvpp_decode_random_crop_resize_jpeg4->ValidateParams(); + EXPECT_ERROR(rc); + + // SoftDvppDecodeRandomCropResizeJpeg: scale must be in the format of (min, max) + std::shared_ptr soft_dvpp_decode_random_crop_resize_jpeg5( + new vision::SoftDvppDecodeRandomCropResizeJpegOperation({500}, {0.6, 0.2}, {3. / 4., 4. / 3.}, 1)); + rc = soft_dvpp_decode_random_crop_resize_jpeg5->ValidateParams(); + EXPECT_ERROR(rc); + + // SoftDvppDecodeRandomCropResizeJpeg: scale must be a vector of two values + std::shared_ptr soft_dvpp_decode_random_crop_resize_jpeg6( + new vision::SoftDvppDecodeRandomCropResizeJpegOperation({500}, {0.5, 0.6, 0.7}, {3. / 4., 4. / 3.}, 1)); + rc = soft_dvpp_decode_random_crop_resize_jpeg6->ValidateParams(); + EXPECT_ERROR(rc); + + // SoftDvppDecodeRandomCropResizeJpeg: ratio must be greater than or equal to 0 + std::shared_ptr soft_dvpp_decode_random_crop_resize_jpeg7( + new vision::SoftDvppDecodeRandomCropResizeJpegOperation({500}, {0.5, 0.9}, {-0.2, 0.4}, 5)); + rc = soft_dvpp_decode_random_crop_resize_jpeg7->ValidateParams(); + EXPECT_ERROR(rc); + + // SoftDvppDecodeRandomCropResizeJpeg: ratio must be in the format of (min, max) + std::shared_ptr soft_dvpp_decode_random_crop_resize_jpeg8( + new vision::SoftDvppDecodeRandomCropResizeJpegOperation({500}, {0.5, 0.9}, {0.4, 0.2}, 5)); + rc = soft_dvpp_decode_random_crop_resize_jpeg8->ValidateParams(); + EXPECT_ERROR(rc); + // SoftDvppDecodeRandomCropResizeJpeg: ratio must be a vector of two values + std::shared_ptr soft_dvpp_decode_random_crop_resize_jpeg9( + new vision::SoftDvppDecodeRandomCropResizeJpegOperation({500}, {0.5, 0.9}, {0.1, 0.2, 0.3}, 5)); + rc = soft_dvpp_decode_random_crop_resize_jpeg9->ValidateParams(); + EXPECT_ERROR(rc); + + // SoftDvppDecodeRandomCropResizeJpeg: max_attempts must be greater than or equal to 1 + std::shared_ptr soft_dvpp_decode_random_crop_resize_jpeg10( + new vision::SoftDvppDecodeRandomCropResizeJpegOperation({500}, {0.5, 0.9}, {0.1, 0.2}, 0)); + rc = soft_dvpp_decode_random_crop_resize_jpeg10->ValidateParams(); + EXPECT_ERROR(rc); +} + +TEST_F(MindDataTestIRVision, TestSoftDvppDecodeResizeJpegFail) { + MS_LOG(INFO) << "Doing MindDataTestIRVision-TestSoftDvppDecodeResizeJpegFail with incorrect size."; + + Status rc; + + // CSoftDvppDecodeResizeJpeg: size must be a vector of one or two values + std::shared_ptr soft_dvpp_decode_resize_jpeg_op1(new vision::SoftDvppDecodeResizeJpegOperation({})); + rc = soft_dvpp_decode_resize_jpeg_op1->ValidateParams(); + EXPECT_ERROR(rc); + + // SoftDvppDecodeResizeJpeg: size must be a vector of one or two values + std::shared_ptr soft_dvpp_decode_resize_jpeg_op2( + new vision::SoftDvppDecodeResizeJpegOperation({1, 2, 3})); + rc = soft_dvpp_decode_resize_jpeg_op2->ValidateParams(); + EXPECT_ERROR(rc); + + // SoftDvppDecodeResizeJpeg: size must only contain positive integers + std::shared_ptr soft_dvpp_decode_resize_jpeg_op3( + new vision::SoftDvppDecodeResizeJpegOperation({20, -20})); + rc = soft_dvpp_decode_resize_jpeg_op3->ValidateParams(); + EXPECT_ERROR(rc); + + // SoftDvppDecodeResizeJpeg: size must only contain positive integers + std::shared_ptr soft_dvpp_decode_resize_jpeg_op4(new vision::SoftDvppDecodeResizeJpegOperation({0})); + rc = soft_dvpp_decode_resize_jpeg_op4->ValidateParams(); + EXPECT_ERROR(rc); +} + +TEST_F(MindDataTestIRVision, TestVisionOperationName) { + MS_LOG(INFO) << "Doing MindDataTestIRVision-TestVisionOperationName."; + + std::string correct_name; + + // Create object for the tensor op, and check the name + std::shared_ptr random_vertical_flip_op = std::make_shared(0.5); + correct_name = "RandomVerticalFlip"; + EXPECT_EQ(correct_name, random_vertical_flip_op->Name()); - Status rc6 = normalize6->ValidateParams(); - EXPECT_ERROR(rc6); + // Create object for the tensor op, and check the name + std::shared_ptr softDvpp_decode_resize_jpeg_op( + new vision::SoftDvppDecodeResizeJpegOperation({1, 1})); + correct_name = "SoftDvppDecodeResizeJpeg"; + EXPECT_EQ(correct_name, softDvpp_decode_resize_jpeg_op->Name()); }