From 9e83337e2f44c3e2322e869255c276337c2fbb27 Mon Sep 17 00:00:00 2001 From: changzherui Date: Sat, 27 Jun 2020 15:33:27 +0800 Subject: [PATCH] delete pynative lenet_model test --- .../python/pynative_mode/ge/model/__init__.py | 0 .../ge/model/test_lenet_model.py | 70 ------------------- 2 files changed, 70 deletions(-) delete mode 100644 tests/ut/python/pynative_mode/ge/model/__init__.py delete mode 100644 tests/ut/python/pynative_mode/ge/model/test_lenet_model.py diff --git a/tests/ut/python/pynative_mode/ge/model/__init__.py b/tests/ut/python/pynative_mode/ge/model/__init__.py deleted file mode 100644 index e69de29bb2..0000000000 diff --git a/tests/ut/python/pynative_mode/ge/model/test_lenet_model.py b/tests/ut/python/pynative_mode/ge/model/test_lenet_model.py deleted file mode 100644 index b882273aab..0000000000 --- a/tests/ut/python/pynative_mode/ge/model/test_lenet_model.py +++ /dev/null @@ -1,70 +0,0 @@ -# Copyright 2020 Huawei Technologies Co., Ltd -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================ -""" test_lenet_model """ -import numpy as np -import pytest - -import mindspore.nn as nn -from mindspore.common.tensor import Tensor -from mindspore.nn import WithGradCell -from mindspore.ops import operations as P - - -class LeNet5(nn.Cell): - """ LeNet5 definition """ - - def __init__(self): - super(LeNet5, self).__init__() - self.conv1 = nn.Conv2d(1, 6, 5, pad_mode='valid') - self.conv2 = nn.Conv2d(6, 16, 5, pad_mode='valid') - self.fc1 = nn.Dense(16 * 5 * 5, 120) - self.fc2 = nn.Dense(120, 84) - self.fc3 = nn.Dense(84, 10) - self.relu = nn.ReLU() - self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2) - self.flatten = P.Flatten() - - def construct(self, x): - x = self.max_pool2d(self.relu(self.conv1(x))) - x = self.max_pool2d(self.relu(self.conv2(x))) - x = self.flatten(x) - x = self.relu(self.fc1(x)) - x = self.relu(self.fc2(x)) - x = self.fc3(x) - return x - - -@pytest.mark.skip(reason="need ge backend") -def test_lenet_pynative_train_net(): - """ test_lenet_pynative_train_net """ - data = Tensor(np.ones([1, 1, 32, 32]).astype(np.float32) * 0.01) - label = Tensor(np.ones([1, 10]).astype(np.float32)) - dout = Tensor(np.ones([1]).astype(np.float32)) - iteration_num = 1 - verification_step = 0 - - net = LeNet5() - - for i in range(0, iteration_num): - # get the gradients - loss_fn = nn.SoftmaxCrossEntropyWithLogits(is_grad=False) - grad_fn = nn.SoftmaxCrossEntropyWithLogits() - grad_net = WithGradCell(net, grad_fn, sens=dout) - - -def test_lenet_pynative_train_model(): - """ test_lenet_pynative_train_model """ - # get loss from model.compute_loss - return