diff --git a/mindspore/common/tensor.py b/mindspore/common/tensor.py index 73c758eccb..1289c5204d 100644 --- a/mindspore/common/tensor.py +++ b/mindspore/common/tensor.py @@ -69,8 +69,8 @@ class Tensor(Tensor_): valid_dtypes = (np.int8, np.int16, np.int32, np.int64, np.uint8, np.uint16, np.uint32, np.uint64, np.float16, np.float32, np.float64, np.bool_) if isinstance(input_data, np.ndarray) and input_data.dtype not in valid_dtypes: - raise TypeError(f"For Tensor, the input_data is a numpy array whose data type is " - f"{input_data.dtype} that is not supported to initialize a Tensor.") + raise TypeError(f"For Tensor, the input_data is a numpy array whose value is {input_data} and " + f"data type is {input_data.dtype} that is not supported to initialize a Tensor.") if isinstance(input_data, (tuple, list)): if np.array(input_data).dtype not in valid_dtypes: raise TypeError(f"For Tensor, the input_data is {input_data} that contain unsupported element.") diff --git a/mindspore/ops/operations/nn_ops.py b/mindspore/ops/operations/nn_ops.py index 6d72f593dd..5deded44da 100644 --- a/mindspore/ops/operations/nn_ops.py +++ b/mindspore/ops/operations/nn_ops.py @@ -1741,8 +1741,8 @@ class TopK(PrimitiveWithInfer): >>> input_x = Tensor([1, 2, 3, 4, 5], mindspore.float16) >>> k = 3 >>> values, indices = topk(input_x, k) - >>> assert values == Tensor(np.array([5, 4, 3]), mstype.float16) - >>> assert indices == Tensor(np.array([4, 3, 2]), mstype.int32) + >>> assert values == Tensor(np.array([5, 4, 3]), mstype.float16).all() + >>> assert indices == Tensor(np.array([4, 3, 2]), mstype.int32).all() """ @prim_attr_register