diff --git a/mindspore/nn/optim/lazyadam.py b/mindspore/nn/optim/lazyadam.py index 9da6095974..9175f4f6ba 100644 --- a/mindspore/nn/optim/lazyadam.py +++ b/mindspore/nn/optim/lazyadam.py @@ -172,7 +172,7 @@ class LazyAdam(Optimizer): If false, the result is unpredictable. Default: False. use_nesterov (bool): Whether to use Nesterov Accelerated Gradient (NAG) algorithm to update the gradients. If true, update the gradients using NAG. - If true, update the gradients without using NAG. Default: False. + If false, update the gradients without using NAG. Default: False. weight_decay (float): Weight decay (L2 penalty). Default: 0.0. loss_scale (float): A floating point value for the loss scale. Should be equal to or greater than 1. Default: 1.0. diff --git a/mindspore/ops/operations/math_ops.py b/mindspore/ops/operations/math_ops.py index 8c6fa02d9b..96b4317675 100644 --- a/mindspore/ops/operations/math_ops.py +++ b/mindspore/ops/operations/math_ops.py @@ -1772,7 +1772,7 @@ class Erfc(PrimitiveWithInfer): >>> input_x = Tensor(np.array([-1, 0, 1, 2, 3]), mindspore.float32) >>> erfc = P.Erfc() >>> erfc(input_x) - [1.8427168, 0., 0.1572832, 0.00469124, 0.00002235] + [1.8427168, 1.0, 0.1572832, 0.00469124, 0.00002235] """ @prim_attr_register @@ -2895,6 +2895,8 @@ class FloatStatus(PrimitiveWithInfer): >>> float_status = P.FloatStatus() >>> input_x = Tensor(np.array([np.log(-1), 1, np.log(0)]), mindspore.float32) >>> result = float_status(input_x) + >>> print(result) + [1.] """ @prim_attr_register diff --git a/mindspore/ops/operations/nn_ops.py b/mindspore/ops/operations/nn_ops.py index cb2e821a76..7960e6a628 100644 --- a/mindspore/ops/operations/nn_ops.py +++ b/mindspore/ops/operations/nn_ops.py @@ -90,7 +90,8 @@ class Flatten(PrimitiveWithInfer): >>> input_tensor = Tensor(np.ones(shape=[1, 2, 3, 4]), mindspore.float32) >>> flatten = P.Flatten() >>> output = flatten(input_tensor) - >>> assert output.shape == (1, 24) + >>> print(output.shape) + (1, 24) """ @prim_attr_register @@ -700,7 +701,7 @@ class FusedBatchNormEx(PrimitiveWithInfer): Outputs: Tuple of 6 Tensors, the normalized input, the updated parameters and reserve. - - **output_x** (Tensor) - The input of FusedBatchNormEx, same type and shape as the `input_x`. + - **output_x** (Tensor) - The output of FusedBatchNormEx, same type and shape as the `input_x`. - **updated_scale** (Tensor) - Updated parameter scale, Tensor of shape :math:`(C,)`, data type: float32. - **updated_bias** (Tensor) - Updated parameter bias, Tensor of shape :math:`(C,)`, data type: float32. - **updated_moving_mean** (Tensor) - Updated mean value, Tensor of shape :math:`(C,)`, data type: float32. @@ -3206,7 +3207,7 @@ class Adam(PrimitiveWithInfer): If false, the result is unpredictable. Default: False. use_nesterov (bool): Whether to use Nesterov Accelerated Gradient (NAG) algorithm to update the gradients. If true, update the gradients using NAG. - If true, update the gradients without using NAG. Default: False. + If false, update the gradients without using NAG. Default: False. Inputs: - **var** (Tensor) - Weights to be updated. @@ -3306,7 +3307,7 @@ class FusedSparseAdam(PrimitiveWithInfer): If false, the result is unpredictable. Default: False. use_nesterov (bool): Whether to use Nesterov Accelerated Gradient (NAG) algorithm to update the gradients. If true, update the gradients using NAG. - If true, update the gradients without using NAG. Default: False. + If false, update the gradients without using NAG. Default: False. Inputs: - **var** (Parameter) - Parameters to be updated with float32 data type. @@ -3439,7 +3440,7 @@ class FusedSparseLazyAdam(PrimitiveWithInfer): If false, the result is unpredictable. Default: False. use_nesterov (bool): Whether to use Nesterov Accelerated Gradient (NAG) algorithm to update the gradients. If true, update the gradients using NAG. - If true, update the gradients without using NAG. Default: False. + If false, update the gradients without using NAG. Default: False. Inputs: - **var** (Parameter) - Parameters to be updated with float32 data type.