diff --git a/mindspore/ops/operations/random_ops.py b/mindspore/ops/operations/random_ops.py index a1db4903c5..7b42644257 100644 --- a/mindspore/ops/operations/random_ops.py +++ b/mindspore/ops/operations/random_ops.py @@ -401,7 +401,7 @@ class RandomChoiceWithMask(PrimitiveWithInfer): Inputs: - **input_x** (Tensor[bool]) - The input tensor. - The input tensor rank must be greater than or equal to 1 and less than or equal to 5. + The input tensor rank must be greater than or equal to 1 and less than or equal to 5. Outputs: Two tensors, the first one is the index tensor and the other one is the mask tensor. @@ -530,7 +530,7 @@ class Multinomial(PrimitiveWithInfer): seed2 (int): Random seed2, must be non-negative. Default: 0. Inputs: - **input** (Tensor[float32]) - the input tensor containing the cumsum of probabilities, must be 1 or 2 - dimensions. + dimensions. - **num_samples** (int32) - number of samples to draw. Outputs: @@ -594,11 +594,11 @@ class UniformCandidateSampler(PrimitiveWithInfer): Outputs: - **sampled_candidates** (Tensor) - The sampled_candidates is independent of the true classes. - Shape: (num_sampled, ). + Shape: (num_sampled, ). - **true_expected_count** (Tensor) - The expected counts under the sampling distribution of each - of true_classes. Shape: (batch_size, num_true). + of true_classes. Shape: (batch_size, num_true). - **sampled_expected_count** (Tensor) - The expected counts under the sampling distribution of - each of sampled_candidates. Shape: (num_sampled, ). + each of sampled_candidates. Shape: (num_sampled, ). Supported Platforms: ``GPU``