From a8229663007caa32ff423732e72506e693bc2fec Mon Sep 17 00:00:00 2001 From: fangzehua Date: Tue, 18 Aug 2020 09:39:04 +0800 Subject: [PATCH] add cache ops for cpu and aicpu --- .../kernel_compiler/cpu/assign_cpu_kernel.cc | 80 ++++++ .../kernel_compiler/cpu/assign_cpu_kernel.h | 67 +++++ .../cpu/cache_swap_hashmap_cpu_kernel.cc | 112 ++++++++ .../cpu/cache_swap_hashmap_cpu_kernel.h | 89 ++++++ .../cpu/embedding_look_up_cpu_kernel.h | 10 + .../cpu/map_cache_idx_cpu_kernel.cc | 207 ++++++++++++++ .../cpu/map_cache_idx_cpu_kernel.h | 105 +++++++ .../cpu/search_cache_idx_cpu_kernel.cc | 104 +++++++ .../cpu/search_cache_idx_cpu_kernel.h | 140 +++++++++ .../cpu/update_cache_cpu_kernel.cc | 85 ++++++ .../cpu/update_cache_cpu_kernel.h | 108 +++++++ mindspore/ops/_op_impl/aicpu/__init__.py | 4 + .../ops/_op_impl/aicpu/cache_swap_hashmap.py | 43 +++ .../ops/_op_impl/aicpu/cache_swap_table.py | 102 +++++++ .../ops/_op_impl/aicpu/search_cache_idx.py | 51 ++++ mindspore/ops/_op_impl/aicpu/update_cache.py | 44 +++ mindspore/ops/operations/__init__.py | 1 + mindspore/ops/operations/_cache_ops.py | 267 ++++++++++++++++++ tests/st/ops/cpu/test_cache_ops.py | 233 +++++++++++++++ 19 files changed, 1852 insertions(+) create mode 100644 mindspore/ccsrc/backend/kernel_compiler/cpu/assign_cpu_kernel.cc create mode 100644 mindspore/ccsrc/backend/kernel_compiler/cpu/assign_cpu_kernel.h create mode 100644 mindspore/ccsrc/backend/kernel_compiler/cpu/cache_swap_hashmap_cpu_kernel.cc create mode 100644 mindspore/ccsrc/backend/kernel_compiler/cpu/cache_swap_hashmap_cpu_kernel.h create mode 100644 mindspore/ccsrc/backend/kernel_compiler/cpu/map_cache_idx_cpu_kernel.cc create mode 100644 mindspore/ccsrc/backend/kernel_compiler/cpu/map_cache_idx_cpu_kernel.h create mode 100644 mindspore/ccsrc/backend/kernel_compiler/cpu/search_cache_idx_cpu_kernel.cc create mode 100644 mindspore/ccsrc/backend/kernel_compiler/cpu/search_cache_idx_cpu_kernel.h create mode 100644 mindspore/ccsrc/backend/kernel_compiler/cpu/update_cache_cpu_kernel.cc create mode 100644 mindspore/ccsrc/backend/kernel_compiler/cpu/update_cache_cpu_kernel.h create mode 100644 mindspore/ops/_op_impl/aicpu/cache_swap_hashmap.py create mode 100644 mindspore/ops/_op_impl/aicpu/cache_swap_table.py create mode 100644 mindspore/ops/_op_impl/aicpu/search_cache_idx.py create mode 100644 mindspore/ops/_op_impl/aicpu/update_cache.py create mode 100644 mindspore/ops/operations/_cache_ops.py create mode 100644 tests/st/ops/cpu/test_cache_ops.py diff --git a/mindspore/ccsrc/backend/kernel_compiler/cpu/assign_cpu_kernel.cc b/mindspore/ccsrc/backend/kernel_compiler/cpu/assign_cpu_kernel.cc new file mode 100644 index 0000000000..3760f1b5a1 --- /dev/null +++ b/mindspore/ccsrc/backend/kernel_compiler/cpu/assign_cpu_kernel.cc @@ -0,0 +1,80 @@ +/** + * Copyright 2020 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "backend/kernel_compiler/cpu/assign_cpu_kernel.h" +#include +#include "runtime/device/cpu/cpu_device_address.h" + +namespace mindspore { +namespace kernel { +void AssignCPUKernel::InitKernel(const CNodePtr &kernel_node) { + auto input_x_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0); + auto input_y_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 1); + + for (size_t i = 0; i < input_x_shape.size(); ++i) { + batch_size_ *= input_x_shape[i]; + } + + if (input_x_shape.size() != input_y_shape.size()) MS_LOG(EXCEPTION) << "x y must be same shape"; + for (size_t i = 0; i < input_x_shape.size(); ++i) { + if (input_x_shape[i] != input_y_shape[i]) { + MS_LOG(EXCEPTION) << "x y must be same shape"; + } + } + input_x_dtype_ = AnfAlgo::GetPrevNodeOutputInferDataType(kernel_node, 0); + + if (input_x_dtype_ == kNumberTypeFloat32 || input_x_dtype_ == kNumberTypeInt32) { + input_x_dtype_size_ = 4; + } else if (input_x_dtype_ == kNumberTypeFloat64 || input_x_dtype_ == kNumberTypeInt64) { + input_x_dtype_size_ = 8; + } else { + MS_LOG(EXCEPTION) << "input_x dtype only support float32, float64, int32, int64"; + } +} + +bool AssignCPUKernel::Launch(const std::vector &inputs, + const std::vector & /*workspace*/, + const std::vector &outputs) { + if (input_x_dtype_ == kNumberTypeInt32) { + LaunchKernel(inputs, outputs); + } else if (input_x_dtype_ == kNumberTypeInt64) { + LaunchKernel(inputs, outputs); + } else if (input_x_dtype_ == kNumberTypeFloat32) { + LaunchKernel(inputs, outputs); + } else if (input_x_dtype_ == kNumberTypeFloat64) { + LaunchKernel(inputs, outputs); + } else { + MS_LOG(ERROR) << "indices dtype only support float32, float64, int32, int64"; + return false; + } + return true; +} + +template +void AssignCPUKernel::LaunchKernel(const std::vector &inputs, + const std::vector &outputs) { + T *input_x = reinterpret_cast(inputs[0]->addr); + T *input_y = reinterpret_cast(inputs[1]->addr); + size_t total_size = input_x_dtype_size_ * batch_size_; + + int ret = memcpy_s(input_x, total_size, input_y, total_size); + if (ret != 0) { + MS_LOG(EXCEPTION) << "memcpy_s error, errorno" << ret; + } +} + +} // namespace kernel +} // namespace mindspore diff --git a/mindspore/ccsrc/backend/kernel_compiler/cpu/assign_cpu_kernel.h b/mindspore/ccsrc/backend/kernel_compiler/cpu/assign_cpu_kernel.h new file mode 100644 index 0000000000..9c7d5d086a --- /dev/null +++ b/mindspore/ccsrc/backend/kernel_compiler/cpu/assign_cpu_kernel.h @@ -0,0 +1,67 @@ +/** + * Copyright 2020 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_ASSIGN_CPU_KERNEL_H_ +#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_ASSIGN_CPU_KERNEL_H_ + +#include +#include +#include +#include "backend/kernel_compiler/cpu/cpu_kernel.h" +#include "backend/kernel_compiler/cpu/cpu_kernel_factory.h" + +namespace mindspore { +namespace kernel { +class AssignCPUKernel : public CPUKernel { + public: + AssignCPUKernel() = default; + ~AssignCPUKernel() override = default; + + void InitKernel(const CNodePtr &kernel_node) override; + + bool Launch(const std::vector &inputs, const std::vector &workspace, + const std::vector &outputs) override; + + template + void LaunchKernel(const std::vector &inputs, const std::vector &outputs); + + private: + size_t batch_size_{1}; + TypeId input_x_dtype_{kTypeUnknown}; + size_t input_x_dtype_size_ = 4; +}; + +MS_REG_CPU_KERNEL( + Assign, KernelAttr().AddInputAttr(kNumberTypeInt32).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32), + AssignCPUKernel); + +MS_REG_CPU_KERNEL( + Assign, KernelAttr().AddInputAttr(kNumberTypeInt64).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeInt64), + AssignCPUKernel); + +MS_REG_CPU_KERNEL( + Assign, + KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32), + AssignCPUKernel); + +MS_REG_CPU_KERNEL( + Assign, + KernelAttr().AddInputAttr(kNumberTypeFloat64).AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeFloat64), + AssignCPUKernel); + +} // namespace kernel +} // namespace mindspore + +#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_UPDATE_CACHE_CPU_KERNEL_H_ diff --git a/mindspore/ccsrc/backend/kernel_compiler/cpu/cache_swap_hashmap_cpu_kernel.cc b/mindspore/ccsrc/backend/kernel_compiler/cpu/cache_swap_hashmap_cpu_kernel.cc new file mode 100644 index 0000000000..2245626df7 --- /dev/null +++ b/mindspore/ccsrc/backend/kernel_compiler/cpu/cache_swap_hashmap_cpu_kernel.cc @@ -0,0 +1,112 @@ +/** + * Copyright 2020 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "backend/kernel_compiler/cpu/cache_swap_hashmap_cpu_kernel.h" +#include +#include "runtime/device/cpu/cpu_device_address.h" + +namespace mindspore { +namespace kernel { + +template +void Compress(HashmapEntry *entry_p, const size_t &length, T entry) { + T i = (entry + 1) % length, off = 1; + for (; !entry_p[i].IsEmpty(); i = (i + 1) % length, off++) { + if (entry_p[i].tag > off) { + entry_p[entry].key = entry_p[i].key; + entry_p[entry].value = entry_p[i].value; + entry_p[entry].step = entry_p[i].step; + entry_p[entry].tag = entry_p[i].tag - off; + entry_p[i].SetEmpty(); + off = 0; + entry = i; + } + } +} + +void CacheSwapHashmapCPUKernel::InitKernel(const CNodePtr &kernel_node) { + auto hashmap_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0); + auto emb_idx_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 1); + + if (hashmap_shape.size() != 2) { + MS_LOG(EXCEPTION) << "Dimension of HashMap must be 2, (n, 4)"; + } + + for (size_t i = 0; i < emb_idx_shape.size(); ++i) { + batch_size_ *= emb_idx_shape[i]; + } + + hashmap_length_ = hashmap_shape[0]; + dtype_ = AnfAlgo::GetPrevNodeOutputInferDataType(kernel_node, 0); +} + +bool CacheSwapHashmapCPUKernel::Launch(const std::vector &inputs, + const std::vector & /*workspace*/, + const std::vector &outputs) { + if (dtype_ == kNumberTypeInt32) { + LaunchKernel(inputs, outputs); + } else if (dtype_ == kNumberTypeInt64) { + LaunchKernel(inputs, outputs); + } else { + MS_LOG(ERROR) << "Only support int32, int64"; + return false; + } + return true; +} + +template +void CacheSwapHashmapCPUKernel::LaunchKernel(const std::vector &inputs, + const std::vector &outputs) { + HashmapEntry *hashmap = reinterpret_cast *>(inputs[0]->addr); + auto miss_emb_idx = reinterpret_cast(inputs[1]->addr); + step_ = *reinterpret_cast(inputs[2]->addr); + auto swap_cache_idx = reinterpret_cast(outputs[0]->addr); + auto old_emb_idx = reinterpret_cast(outputs[1]->addr); + + for (size_t i = 0; i < batch_size_; ++i) { + if (miss_emb_idx[i] < 0) { + swap_cache_idx[i] = -1; + old_emb_idx[i] = -1; + } else { + T emb_idx = miss_emb_idx[i]; + T entry = HashFunc(emb_idx, hashmap_length_); + T tag_count = 1; + while (!hashmap[entry].IsEmpty()) { + entry = (entry + 1) % hashmap_length_; + tag_count++; + } + + hashmap[entry].key = emb_idx; + hashmap[entry].step = step_; + hashmap[entry].tag = tag_count; + + T tmp_entry = (entry + 1) % hashmap_length_; + + while (hashmap[tmp_entry].IsEmpty() || hashmap[tmp_entry].IsUsing(step_)) { + tmp_entry = (tmp_entry + 1) % hashmap_length_; + } + + swap_cache_idx[i] = hashmap[tmp_entry].value; + old_emb_idx[i] = hashmap[tmp_entry].key; + hashmap[entry].value = swap_cache_idx[i]; + hashmap[tmp_entry].SetEmpty(); + Compress(hashmap, hashmap_length_, tmp_entry); + } + } +} + +} // namespace kernel +} // namespace mindspore diff --git a/mindspore/ccsrc/backend/kernel_compiler/cpu/cache_swap_hashmap_cpu_kernel.h b/mindspore/ccsrc/backend/kernel_compiler/cpu/cache_swap_hashmap_cpu_kernel.h new file mode 100644 index 0000000000..fcbcf1265a --- /dev/null +++ b/mindspore/ccsrc/backend/kernel_compiler/cpu/cache_swap_hashmap_cpu_kernel.h @@ -0,0 +1,89 @@ +/** + * Copyright 2020 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_CACHE_SWAP_HASHMAP_CPU_KERNEL_H_ +#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_CACHE_SWAP_HASHMAP_CPU_KERNEL_H_ + +#include +#include +#include +#include "backend/kernel_compiler/cpu/cpu_kernel.h" +#include "backend/kernel_compiler/cpu/cpu_kernel_factory.h" +#include "backend/kernel_compiler/cpu/search_cache_idx_cpu_kernel.h" + +namespace mindspore { +namespace kernel { + +class CacheSwapHashmapCPUKernel : public CPUKernel { + public: + CacheSwapHashmapCPUKernel() = default; + ~CacheSwapHashmapCPUKernel() override = default; + + void InitKernel(const CNodePtr &kernel_node) override; + + bool Launch(const std::vector &inputs, const std::vector &workspace, + const std::vector &outputs) override; + + template + void LaunchKernel(const std::vector &inputs, const std::vector &outputs); + + private: + size_t batch_size_{1}; + size_t hashmap_length_{1}; + int64_t step_{0}; + + TypeId dtype_{kTypeUnknown}; +}; + +MS_REG_CPU_KERNEL(CacheSwapHashmap, + KernelAttr() + .AddInputAttr(kNumberTypeInt32) + .AddInputAttr(kNumberTypeInt32) + .AddInputAttr(kNumberTypeInt32) + .AddOutputAttr(kNumberTypeInt32) + .AddOutputAttr(kNumberTypeInt32), + CacheSwapHashmapCPUKernel); + +MS_REG_CPU_KERNEL(CacheSwapHashmap, + KernelAttr() + .AddInputAttr(kNumberTypeInt64) + .AddInputAttr(kNumberTypeInt64) + .AddInputAttr(kNumberTypeInt32) + .AddOutputAttr(kNumberTypeInt64) + .AddOutputAttr(kNumberTypeInt64), + CacheSwapHashmapCPUKernel); + +MS_REG_CPU_KERNEL(CacheSwapHashmap, + KernelAttr() + .AddInputAttr(kNumberTypeInt64) + .AddInputAttr(kNumberTypeInt64) + .AddInputAttr(kNumberTypeInt64) + .AddOutputAttr(kNumberTypeInt64) + .AddOutputAttr(kNumberTypeInt64), + CacheSwapHashmapCPUKernel); + +MS_REG_CPU_KERNEL(CacheSwapHashmap, + KernelAttr() + .AddInputAttr(kNumberTypeInt32) + .AddInputAttr(kNumberTypeInt32) + .AddInputAttr(kNumberTypeInt64) + .AddOutputAttr(kNumberTypeInt32) + .AddOutputAttr(kNumberTypeInt32), + CacheSwapHashmapCPUKernel); + +} // namespace kernel +} // namespace mindspore + +#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_CACHE_SWAP_HASHMAP_CPU_KERNEL_H_ diff --git a/mindspore/ccsrc/backend/kernel_compiler/cpu/embedding_look_up_cpu_kernel.h b/mindspore/ccsrc/backend/kernel_compiler/cpu/embedding_look_up_cpu_kernel.h index c3ffc851d7..23481242f8 100644 --- a/mindspore/ccsrc/backend/kernel_compiler/cpu/embedding_look_up_cpu_kernel.h +++ b/mindspore/ccsrc/backend/kernel_compiler/cpu/embedding_look_up_cpu_kernel.h @@ -49,6 +49,16 @@ MS_REG_CPU_KERNEL( KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeFloat32), EmbeddingLookUpCPUKernel); +MS_REG_CPU_KERNEL( + EmbeddingLookup, + KernelAttr().AddInputAttr(kNumberTypeInt32).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32), + EmbeddingLookUpCPUKernel); + +MS_REG_CPU_KERNEL( + EmbeddingLookup, + KernelAttr().AddInputAttr(kNumberTypeInt64).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeInt64), + EmbeddingLookUpCPUKernel); + MS_REG_CPU_KERNEL( EmbeddingLookup, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeFloat32), diff --git a/mindspore/ccsrc/backend/kernel_compiler/cpu/map_cache_idx_cpu_kernel.cc b/mindspore/ccsrc/backend/kernel_compiler/cpu/map_cache_idx_cpu_kernel.cc new file mode 100644 index 0000000000..14c787ac57 --- /dev/null +++ b/mindspore/ccsrc/backend/kernel_compiler/cpu/map_cache_idx_cpu_kernel.cc @@ -0,0 +1,207 @@ +/** + * Copyright 2020 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "backend/kernel_compiler/cpu/map_cache_idx_cpu_kernel.h" +#include +#include +#include +#include "runtime/device/cpu/cpu_device_address.h" + +namespace mindspore { +namespace kernel { + +template +struct HashmapEntry { + T key; + T value; + T step; + T tag; + + bool IsEmpty() { + if (this->tag == NULLTAG) + return true; + else + return false; + } + + bool IsUsing(const T &train_step) { + if (this->step >= (train_step - 1)) + return true; + else + return false; + } + + bool IsKey(const T &emb_idx) { + if (this->key == emb_idx) + return true; + else + return false; + } + + void SetEmpty() { this->tag = NULLTAG; } +}; + +template +T HashFunc(const T &key, const size_t &m) { + return (T)(((0.6180339 * key) - floor(0.6180339 * key)) * m); +} + +template +void Compress(HashmapEntry *entry_p, const size_t &length, T entry) { + T i = (entry + 1) % length, off = 1; + for (; !entry_p[i].IsEmpty(); i = (i + 1) % length, off++) { + if (entry_p[i].tag > off) { + entry_p[entry].key = entry_p[i].key; + entry_p[entry].value = entry_p[i].value; + entry_p[entry].step = entry_p[i].step; + entry_p[entry].tag = entry_p[i].tag - off; + entry_p[i].SetEmpty(); + off = 0; + entry = i; + } + } +} + +void MapCacheIdxCPUKernel::InitKernel(const CNodePtr &kernel_node) { + auto hashmap_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0); + auto emb_idx_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 1); + + if (hashmap_shape.size() != 2) { + MS_LOG(EXCEPTION) << "Dimension of HashMap must be 2, (n, 4)"; + } + + for (size_t i = 0; i < emb_idx_shape.size(); ++i) { + batch_size_ *= emb_idx_shape[i]; + } + + hashmap_length_ = hashmap_shape[0]; + dtype_ = AnfAlgo::GetPrevNodeOutputInferDataType(kernel_node, 0); +} + +bool MapCacheIdxCPUKernel::Launch(const std::vector &inputs, + const std::vector & /*workspace*/, + const std::vector &outputs) { + if (dtype_ == kNumberTypeInt32) { + LaunchKernel(inputs, outputs); + } else if (dtype_ == kNumberTypeInt64) { + LaunchKernel(inputs, outputs); + } else { + MS_LOG(ERROR) << "Only support int32, int64"; + return false; + } + return true; +} + +template +void MapCacheIdxCPUKernel::LaunchKernel(const std::vector &inputs, + const std::vector &outputs) { + HashmapEntry *hashmap = reinterpret_cast *>(inputs[0]->addr); + auto input_indices = reinterpret_cast(inputs[1]->addr); + T *step_ = reinterpret_cast(inputs[2]->addr); + T emb_max_num = *reinterpret_cast(inputs[3]->addr); + T cache_max_num = *reinterpret_cast(inputs[4]->addr); + auto output_cache_idx = reinterpret_cast(outputs[0]->addr); + auto output_old_emb_idx = reinterpret_cast(outputs[1]->addr); + auto output_miss_emb_idx = reinterpret_cast(outputs[2]->addr); + auto output_swap_cache_idx = reinterpret_cast(outputs[3]->addr); + + std::vector output_miss_idx(batch_size_, -1); + + float total_count = 0; + int count_size = 0; + float hit_count = 0; + + // search_cache_idx + for (size_t i = 0; i < batch_size_; ++i) { + if (input_indices[i] == emb_max_num) { + output_miss_idx[i] = -1; + output_cache_idx[i] = cache_max_num; + output_miss_emb_idx[i] = -1; + continue; + } + + T key = input_indices[i]; + T tmp_entry = HashFunc(key, hashmap_length_); + + int count = 1; + count_size += 1; + while ((!hashmap[tmp_entry].IsEmpty() && !hashmap[tmp_entry].IsKey(key))) { + tmp_entry = (tmp_entry + 1) % hashmap_length_; + count += 1; + } + + total_count += count; + if (hashmap[tmp_entry].IsEmpty()) { + output_miss_idx[i] = i; + output_miss_emb_idx[i] = key; + output_cache_idx[i] = -1; + } else { + hit_count += 1; + output_miss_idx[i] = -1; + output_cache_idx[i] = hashmap[tmp_entry].value; + hashmap[tmp_entry].step = step_[0]; + output_miss_emb_idx[i] = -1; + } + } + MS_LOG(INFO) << "avg search count: " << total_count / count_size; + MS_LOG(INFO) << "cache hit rate: " << hit_count / count_size; + + // swap hash map + for (size_t i = 0; i < batch_size_; ++i) { + if (output_miss_emb_idx[i] < 0) { + output_swap_cache_idx[i] = -1; + output_old_emb_idx[i] = -1; + } else { + T emb_idx = output_miss_emb_idx[i]; + T entry = HashFunc(emb_idx, hashmap_length_); + T tag_count = 1; + while (!hashmap[entry].IsEmpty()) { + entry = (entry + 1) % hashmap_length_; + tag_count++; + } + + hashmap[entry].key = emb_idx; + hashmap[entry].step = step_[0]; + hashmap[entry].tag = tag_count; + + T tmp_entry = (entry + 1) % hashmap_length_; + + while (hashmap[tmp_entry].IsEmpty() || hashmap[tmp_entry].IsUsing(step_[0])) { + tmp_entry = (tmp_entry + 1) % hashmap_length_; + } + + output_swap_cache_idx[i] = hashmap[tmp_entry].value; + output_old_emb_idx[i] = hashmap[tmp_entry].key; + hashmap[entry].value = output_swap_cache_idx[i]; + hashmap[tmp_entry].SetEmpty(); + Compress(hashmap, hashmap_length_, tmp_entry); + } + } + + // update step + step_[0] += 1; + + // update cache idx + for (size_t i = 0; i < batch_size_; ++i) { + if (output_miss_idx[i] < 0 || output_miss_idx[i] >= cache_max_num) { + continue; + } + output_cache_idx[i] = output_swap_cache_idx[i]; + } +} + +} // namespace kernel +} // namespace mindspore diff --git a/mindspore/ccsrc/backend/kernel_compiler/cpu/map_cache_idx_cpu_kernel.h b/mindspore/ccsrc/backend/kernel_compiler/cpu/map_cache_idx_cpu_kernel.h new file mode 100644 index 0000000000..e2c3d1f4c3 --- /dev/null +++ b/mindspore/ccsrc/backend/kernel_compiler/cpu/map_cache_idx_cpu_kernel.h @@ -0,0 +1,105 @@ +/** + * Copyright 2020 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_MAP_CACHE_IDX_CPU_KERNEL_H_ +#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_MAP_CACHE_IDX_CPU_KERNEL_H_ + +#include +#include +#include +#include +#include "backend/kernel_compiler/cpu/cpu_kernel.h" +#include "backend/kernel_compiler/cpu/cpu_kernel_factory.h" + +#define NULLTAG 0 + +namespace mindspore { +namespace kernel { + +class MapCacheIdxCPUKernel : public CPUKernel { + public: + MapCacheIdxCPUKernel() = default; + ~MapCacheIdxCPUKernel() override = default; + + void InitKernel(const CNodePtr &kernel_node) override; + + bool Launch(const std::vector &inputs, const std::vector &workspace, + const std::vector &outputs) override; + + template + void LaunchKernel(const std::vector &inputs, const std::vector &outputs); + + private: + size_t batch_size_{1}; + size_t hashmap_length_{1}; + TypeId dtype_{kTypeUnknown}; +}; + +MS_REG_CPU_KERNEL(MapCacheIdx, + KernelAttr() + .AddInputAttr(kNumberTypeInt32) + .AddInputAttr(kNumberTypeInt32) + .AddInputAttr(kNumberTypeInt32) + .AddInputAttr(kNumberTypeInt32) + .AddInputAttr(kNumberTypeInt32) + .AddOutputAttr(kNumberTypeInt32) + .AddOutputAttr(kNumberTypeInt32) + .AddOutputAttr(kNumberTypeInt32) + .AddOutputAttr(kNumberTypeInt32), + MapCacheIdxCPUKernel); + +MS_REG_CPU_KERNEL(MapCacheIdx, + KernelAttr() + .AddInputAttr(kNumberTypeInt64) + .AddInputAttr(kNumberTypeInt64) + .AddInputAttr(kNumberTypeInt64) + .AddInputAttr(kNumberTypeInt64) + .AddInputAttr(kNumberTypeInt64) + .AddOutputAttr(kNumberTypeInt64) + .AddOutputAttr(kNumberTypeInt64) + .AddOutputAttr(kNumberTypeInt64) + .AddOutputAttr(kNumberTypeInt64), + MapCacheIdxCPUKernel); + +MS_REG_CPU_KERNEL(MapCacheIdx, + KernelAttr() + .AddInputAttr(kNumberTypeInt64) + .AddInputAttr(kNumberTypeInt64) + .AddInputAttr(kNumberTypeInt32) + .AddInputAttr(kNumberTypeInt32) + .AddInputAttr(kNumberTypeInt32) + .AddOutputAttr(kNumberTypeInt64) + .AddOutputAttr(kNumberTypeInt64) + .AddOutputAttr(kNumberTypeInt64) + .AddOutputAttr(kNumberTypeInt64), + MapCacheIdxCPUKernel); + +MS_REG_CPU_KERNEL(MapCacheIdx, + KernelAttr() + .AddInputAttr(kNumberTypeInt32) + .AddInputAttr(kNumberTypeInt32) + .AddInputAttr(kNumberTypeInt64) + .AddInputAttr(kNumberTypeInt64) + .AddInputAttr(kNumberTypeInt64) + .AddOutputAttr(kNumberTypeInt32) + .AddOutputAttr(kNumberTypeInt32) + .AddOutputAttr(kNumberTypeInt32) + .AddOutputAttr(kNumberTypeInt32), + MapCacheIdxCPUKernel); + +} // namespace kernel +} // namespace mindspore + +#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_SEARCH_CACHE_IDX_CPU_KERNEL_H_ diff --git a/mindspore/ccsrc/backend/kernel_compiler/cpu/search_cache_idx_cpu_kernel.cc b/mindspore/ccsrc/backend/kernel_compiler/cpu/search_cache_idx_cpu_kernel.cc new file mode 100644 index 0000000000..58be98b886 --- /dev/null +++ b/mindspore/ccsrc/backend/kernel_compiler/cpu/search_cache_idx_cpu_kernel.cc @@ -0,0 +1,104 @@ +/** + * Copyright 2020 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "backend/kernel_compiler/cpu/search_cache_idx_cpu_kernel.h" +#include +#include "runtime/device/cpu/cpu_device_address.h" + +namespace mindspore { +namespace kernel { +void SearchCacheIdxCPUKernel::InitKernel(const CNodePtr &kernel_node) { + auto hashmap_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0); + auto emb_idx_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 1); + + if (hashmap_shape.size() != 2) { + MS_LOG(EXCEPTION) << "Dimension of HashMap must be 2, (n, 4)"; + } + + for (size_t i = 0; i < emb_idx_shape.size(); ++i) { + batch_size_ *= emb_idx_shape[i]; + } + + hashmap_length_ = hashmap_shape[0]; + dtype_ = AnfAlgo::GetPrevNodeOutputInferDataType(kernel_node, 0); +} + +bool SearchCacheIdxCPUKernel::Launch(const std::vector &inputs, + const std::vector & /*workspace*/, + const std::vector &outputs) { + if (dtype_ == kNumberTypeInt32) { + LaunchKernel(inputs, outputs); + } else if (dtype_ == kNumberTypeInt64) { + LaunchKernel(inputs, outputs); + } else { + MS_LOG(ERROR) << "Only support int32, int64"; + return false; + } + return true; +} + +template +void SearchCacheIdxCPUKernel::LaunchKernel(const std::vector &inputs, + const std::vector &outputs) { + HashmapEntry *hashmap = reinterpret_cast *>(inputs[0]->addr); + auto input_indices = reinterpret_cast(inputs[1]->addr); + step_ = *reinterpret_cast(inputs[2]->addr); + emb_max_num = *reinterpret_cast(inputs[3]->addr); + cache_max_num = *reinterpret_cast(inputs[4]->addr); + auto output_cache_idx = reinterpret_cast(outputs[0]->addr); + auto output_miss_idx = reinterpret_cast(outputs[1]->addr); + auto output_miss_emb_idx = reinterpret_cast(outputs[2]->addr); + + float total_count = 0; + int count_size = 0; + float hit_count = 0; + for (size_t i = 0; i < batch_size_; ++i) { + if (input_indices[i] == emb_max_num) { + output_miss_idx[i] = -1; + output_cache_idx[i] = cache_max_num; + output_miss_emb_idx[i] = -1; + continue; + } + + T key = input_indices[i]; + T tmp_entry = HashFunc(key, hashmap_length_); + + int count = 1; + count_size += 1; + while ((!hashmap[tmp_entry].IsEmpty() && !hashmap[tmp_entry].IsKey(key))) { + tmp_entry = (tmp_entry + 1) % hashmap_length_; + count += 1; + } + + total_count += count; + if (hashmap[tmp_entry].IsEmpty()) { + output_miss_idx[i] = i; + output_miss_emb_idx[i] = key; + output_cache_idx[i] = -1; + } else { + hit_count += 1; + output_miss_idx[i] = -1; + output_cache_idx[i] = hashmap[tmp_entry].value; + hashmap[tmp_entry].step = step_; + output_miss_emb_idx[i] = -1; + } + } + MS_LOG(INFO) << "avg search count: " << total_count / count_size; + MS_LOG(INFO) << "cache hit rate: " << hit_count / count_size; +} + +} // namespace kernel +} // namespace mindspore diff --git a/mindspore/ccsrc/backend/kernel_compiler/cpu/search_cache_idx_cpu_kernel.h b/mindspore/ccsrc/backend/kernel_compiler/cpu/search_cache_idx_cpu_kernel.h new file mode 100644 index 0000000000..20bf3a4a66 --- /dev/null +++ b/mindspore/ccsrc/backend/kernel_compiler/cpu/search_cache_idx_cpu_kernel.h @@ -0,0 +1,140 @@ +/** + * Copyright 2020 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_SEARCH_CACHE_IDX_CPU_KERNEL_H_ +#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_SEARCH_CACHE_IDX_CPU_KERNEL_H_ + +#include +#include +#include +#include +#include "backend/kernel_compiler/cpu/cpu_kernel.h" +#include "backend/kernel_compiler/cpu/cpu_kernel_factory.h" + +#define NULLTAG 0 + +namespace mindspore { +namespace kernel { + +template +struct HashmapEntry { + T key; + T value; + T step; + T tag; + + bool IsEmpty() { + if (this->tag == NULLTAG) + return true; + else + return false; + } + + bool IsUsing(const T &train_step) { + if (this->step >= (train_step - 1)) + return true; + else + return false; + } + + bool IsKey(const T &emb_idx) { + if (this->key == emb_idx) + return true; + else + return false; + } + + void SetEmpty() { this->tag = NULLTAG; } +}; + +template +T HashFunc(const T &key, const size_t &m) { + return (T)(((0.6180339 * key) - floor(0.6180339 * key)) * m); +} + +class SearchCacheIdxCPUKernel : public CPUKernel { + public: + SearchCacheIdxCPUKernel() = default; + ~SearchCacheIdxCPUKernel() override = default; + + void InitKernel(const CNodePtr &kernel_node) override; + + bool Launch(const std::vector &inputs, const std::vector &workspace, + const std::vector &outputs) override; + + template + void LaunchKernel(const std::vector &inputs, const std::vector &outputs); + + private: + size_t batch_size_{1}; + size_t hashmap_length_{1}; + size_t step_{0}; + int64_t emb_max_num = 999999999; + int64_t cache_max_num = 999999999; + TypeId dtype_{kTypeUnknown}; +}; + +MS_REG_CPU_KERNEL(SearchCacheIdx, + KernelAttr() + .AddInputAttr(kNumberTypeInt32) + .AddInputAttr(kNumberTypeInt32) + .AddInputAttr(kNumberTypeInt32) + .AddInputAttr(kNumberTypeInt32) + .AddInputAttr(kNumberTypeInt32) + .AddOutputAttr(kNumberTypeInt32) + .AddOutputAttr(kNumberTypeInt32) + .AddOutputAttr(kNumberTypeInt32), + SearchCacheIdxCPUKernel); + +MS_REG_CPU_KERNEL(SearchCacheIdx, + KernelAttr() + .AddInputAttr(kNumberTypeInt64) + .AddInputAttr(kNumberTypeInt64) + .AddInputAttr(kNumberTypeInt64) + .AddInputAttr(kNumberTypeInt64) + .AddInputAttr(kNumberTypeInt64) + .AddOutputAttr(kNumberTypeInt64) + .AddOutputAttr(kNumberTypeInt64) + .AddOutputAttr(kNumberTypeInt64), + SearchCacheIdxCPUKernel); + +MS_REG_CPU_KERNEL(SearchCacheIdx, + KernelAttr() + .AddInputAttr(kNumberTypeInt64) + .AddInputAttr(kNumberTypeInt64) + .AddInputAttr(kNumberTypeInt32) + .AddInputAttr(kNumberTypeInt32) + .AddInputAttr(kNumberTypeInt32) + .AddOutputAttr(kNumberTypeInt64) + .AddOutputAttr(kNumberTypeInt64) + .AddOutputAttr(kNumberTypeInt64), + SearchCacheIdxCPUKernel); + +MS_REG_CPU_KERNEL(SearchCacheIdx, + KernelAttr() + .AddInputAttr(kNumberTypeInt32) + .AddInputAttr(kNumberTypeInt32) + .AddInputAttr(kNumberTypeInt64) + .AddInputAttr(kNumberTypeInt64) + .AddInputAttr(kNumberTypeInt64) + .AddOutputAttr(kNumberTypeInt32) + .AddOutputAttr(kNumberTypeInt32) + .AddOutputAttr(kNumberTypeInt32), + SearchCacheIdxCPUKernel); + +} // namespace kernel +} // namespace mindspore + +#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_SEARCH_CACHE_IDX_CPU_KERNEL_H_ diff --git a/mindspore/ccsrc/backend/kernel_compiler/cpu/update_cache_cpu_kernel.cc b/mindspore/ccsrc/backend/kernel_compiler/cpu/update_cache_cpu_kernel.cc new file mode 100644 index 0000000000..0a127d1cf5 --- /dev/null +++ b/mindspore/ccsrc/backend/kernel_compiler/cpu/update_cache_cpu_kernel.cc @@ -0,0 +1,85 @@ +/** + * Copyright 2020 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "backend/kernel_compiler/cpu/update_cache_cpu_kernel.h" +#include +#include "runtime/device/cpu/cpu_device_address.h" + +namespace mindspore { +namespace kernel { +void UpdateCacheCPUKernel::InitKernel(const CNodePtr &kernel_node) { + auto indices_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 1); + auto update_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 2); + if (indices_shape.size() < 2) { + MS_LOG(EXCEPTION) << "indices shape less than 2"; + } + + for (size_t i = 0; i < indices_shape.size(); ++i) { + batch_size_ *= indices_shape[i]; + } + + for (size_t i = 0; i < update_shape.size(); ++i) { + update_size_ *= update_shape[i]; + } + update_length_ = update_size_ / batch_size_; + input_x_dtype_ = AnfAlgo::GetPrevNodeOutputInferDataType(kernel_node, 0); + indices_dtype_ = AnfAlgo::GetPrevNodeOutputInferDataType(kernel_node, 1); + + if (input_x_dtype_ == kNumberTypeFloat32 || input_x_dtype_ == kNumberTypeInt32) { + input_x_dtype_size_ = 4; + } else if (input_x_dtype_ == kNumberTypeFloat64 || input_x_dtype_ == kNumberTypeInt64) { + input_x_dtype_size_ = 8; + } else { + MS_LOG(EXCEPTION) << "input_x dtype only support float32, float64, int32, int64"; + } +} + +bool UpdateCacheCPUKernel::Launch(const std::vector &inputs, + const std::vector & /*workspace*/, + const std::vector &outputs) { + if (indices_dtype_ == kNumberTypeInt32) { + LaunchKernel(inputs, outputs); + } else if (indices_dtype_ == kNumberTypeInt64) { + LaunchKernel(inputs, outputs); + } else { + MS_LOG(ERROR) << "indices dtype only support int32, int64"; + return false; + } + return true; +} + +template +void UpdateCacheCPUKernel::LaunchKernel(const std::vector &inputs, + const std::vector &outputs) { + char *input_x = reinterpret_cast(inputs[0]->addr); + T *indices = reinterpret_cast(inputs[1]->addr); + char *update = reinterpret_cast(inputs[2]->addr); + max_num_ = *reinterpret_cast(inputs[3]->addr); + + size_t one_length_size = input_x_dtype_size_ * update_length_; + for (size_t i = 0; i < batch_size_; ++i) { + if (indices[i] < 0 || indices[i] >= max_num_) continue; + + char *tmp = update + i * one_length_size; + int ret = memcpy_s(input_x + indices[i] * one_length_size, one_length_size, tmp, one_length_size); + if (ret != 0) { + MS_LOG(EXCEPTION) << "memcpy_s error, errorno" << ret; + } + } +} + +} // namespace kernel +} // namespace mindspore diff --git a/mindspore/ccsrc/backend/kernel_compiler/cpu/update_cache_cpu_kernel.h b/mindspore/ccsrc/backend/kernel_compiler/cpu/update_cache_cpu_kernel.h new file mode 100644 index 0000000000..67309f5b4b --- /dev/null +++ b/mindspore/ccsrc/backend/kernel_compiler/cpu/update_cache_cpu_kernel.h @@ -0,0 +1,108 @@ +/** + * Copyright 2020 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_UPDATE_CACHE_CPU_KERNEL_H_ +#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_UPDATE_CACHE_CPU_KERNEL_H_ + +#include +#include +#include +#include "backend/kernel_compiler/cpu/cpu_kernel.h" +#include "backend/kernel_compiler/cpu/cpu_kernel_factory.h" + +namespace mindspore { +namespace kernel { +class UpdateCacheCPUKernel : public CPUKernel { + public: + UpdateCacheCPUKernel() = default; + ~UpdateCacheCPUKernel() override = default; + + void InitKernel(const CNodePtr &kernel_node) override; + + bool Launch(const std::vector &inputs, const std::vector &workspace, + const std::vector &outputs) override; + + template + void LaunchKernel(const std::vector &inputs, const std::vector &outputs); + + private: + size_t batch_size_{1}; + size_t update_size_{1}; + size_t step_{0}; + size_t update_length_{1}; + int64_t max_num_ = 99999999; + TypeId input_x_dtype_{kTypeUnknown}; + TypeId indices_dtype_{kTypeUnknown}; + size_t input_x_dtype_size_ = 4; +}; + +MS_REG_CPU_KERNEL(UpdateCache, + KernelAttr() + .AddInputAttr(kNumberTypeInt32) + .AddInputAttr(kNumberTypeInt32) + .AddInputAttr(kNumberTypeInt32) + .AddInputAttr(kNumberTypeInt32) + .AddOutputAttr(kNumberTypeInt32), + UpdateCacheCPUKernel); + +MS_REG_CPU_KERNEL(UpdateCache, + KernelAttr() + .AddInputAttr(kNumberTypeFloat32) + .AddInputAttr(kNumberTypeInt32) + .AddInputAttr(kNumberTypeFloat32) + .AddInputAttr(kNumberTypeInt32) + .AddOutputAttr(kNumberTypeFloat32), + UpdateCacheCPUKernel); + +MS_REG_CPU_KERNEL(UpdateCache, + KernelAttr() + .AddInputAttr(kNumberTypeInt64) + .AddInputAttr(kNumberTypeInt32) + .AddInputAttr(kNumberTypeInt64) + .AddInputAttr(kNumberTypeInt32) + .AddOutputAttr(kNumberTypeInt64), + UpdateCacheCPUKernel); + +MS_REG_CPU_KERNEL(UpdateCache, + KernelAttr() + .AddInputAttr(kNumberTypeInt32) + .AddInputAttr(kNumberTypeInt64) + .AddInputAttr(kNumberTypeInt32) + .AddInputAttr(kNumberTypeInt64) + .AddOutputAttr(kNumberTypeInt32), + UpdateCacheCPUKernel); + +MS_REG_CPU_KERNEL(UpdateCache, + KernelAttr() + .AddInputAttr(kNumberTypeFloat32) + .AddInputAttr(kNumberTypeInt64) + .AddInputAttr(kNumberTypeFloat32) + .AddInputAttr(kNumberTypeInt64) + .AddOutputAttr(kNumberTypeFloat32), + UpdateCacheCPUKernel); + +MS_REG_CPU_KERNEL(UpdateCache, + KernelAttr() + .AddInputAttr(kNumberTypeInt64) + .AddInputAttr(kNumberTypeInt64) + .AddInputAttr(kNumberTypeInt64) + .AddInputAttr(kNumberTypeInt64) + .AddOutputAttr(kNumberTypeInt64), + UpdateCacheCPUKernel); + +} // namespace kernel +} // namespace mindspore + +#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_UPDATE_CACHE_CPU_KERNEL_H_ diff --git a/mindspore/ops/_op_impl/aicpu/__init__.py b/mindspore/ops/_op_impl/aicpu/__init__.py index af0405e147..6fffffe739 100644 --- a/mindspore/ops/_op_impl/aicpu/__init__.py +++ b/mindspore/ops/_op_impl/aicpu/__init__.py @@ -38,6 +38,10 @@ from .mirror_pad_grad import _mirror_pad_grad_aicpu from .standard_normal import _standard_normal_aicpu from .gamma import _gamma_aicpu from .poisson import _poisson_aicpu +from .update_cache import _update_cache_aicpu +from .search_cache_idx import _search_cache_idx_aicpu +from .cache_swap_hashmap import _cache_swap_hashmap_aicpu +from .cache_swap_table import _cache_swap_table_aicpu from .uniform_int import _uniform_int_aicpu from .uniform_real import _uniform_real_aicpu from .standard_laplace import _standard_laplace_aicpu diff --git a/mindspore/ops/_op_impl/aicpu/cache_swap_hashmap.py b/mindspore/ops/_op_impl/aicpu/cache_swap_hashmap.py new file mode 100644 index 0000000000..b642ac5401 --- /dev/null +++ b/mindspore/ops/_op_impl/aicpu/cache_swap_hashmap.py @@ -0,0 +1,43 @@ +# Copyright 2020 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ + +"""CacheSwapHashmap op""" +from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType + +cache_swap_hashmap_op_info = AiCPURegOp("CacheSwapHashmap") \ + .fusion_type("OPAQUE") \ + .input(0, "hashmap", "required") \ + .input(1, "miss_emb_idx", "required") \ + .input(2, "step", "required") \ + .output(0, "swap_cache_idx", "required") \ + .output(1, "old_emb_idx", "required") \ + .dtype_format(DataType.I32_Default, DataType.I32_Default, \ + DataType.I32_Default, DataType.I32_Default, \ + DataType.I32_Default) \ + .dtype_format(DataType.I64_Default, DataType.I64_Default, \ + DataType.I32_Default, DataType.I64_Default, \ + DataType.I64_Default) \ + .dtype_format(DataType.I32_Default, DataType.I32_Default, \ + DataType.I64_Default, DataType.I32_Default, \ + DataType.I32_Default) \ + .dtype_format(DataType.I64_Default, DataType.I64_Default, \ + DataType.I64_Default, DataType.I64_Default, \ + DataType.I64_Default) \ + .get_op_info() + +@op_info_register(cache_swap_hashmap_op_info) +def _cache_swap_hashmap_aicpu(): + """CacheSwapHashmap AiCPU register""" + return diff --git a/mindspore/ops/_op_impl/aicpu/cache_swap_table.py b/mindspore/ops/_op_impl/aicpu/cache_swap_table.py new file mode 100644 index 0000000000..393a8142fb --- /dev/null +++ b/mindspore/ops/_op_impl/aicpu/cache_swap_table.py @@ -0,0 +1,102 @@ +# Copyright 2020 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ + +"""CacheSwapHashmap op""" +from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType + +cache_swap_table_op_info = AiCPURegOp("CacheSwapTable") \ + .fusion_type("OPAQUE") \ + .input(0, "cache_table", "required") \ + .input(1, "swap_cache_idx", "required") \ + .input(2, "miss_value", "required") \ + .output(0, "old_value", "required") \ + .dtype_format(DataType.I8_Default, DataType.I32_Default, \ + DataType.I8_Default, DataType.I8_Default) \ + .dtype_format(DataType.I16_Default, DataType.I32_Default, \ + DataType.I16_Default, DataType.I16_Default) \ + .dtype_format(DataType.I32_Default, DataType.I32_Default, \ + DataType.I32_Default, DataType.I32_Default) \ + .dtype_format(DataType.I64_Default, DataType.I32_Default, \ + DataType.I64_Default, DataType.I64_Default) \ + .dtype_format(DataType.U8_Default, DataType.I32_Default, \ + DataType.U8_Default, DataType.U8_Default) \ + .dtype_format(DataType.U16_Default, DataType.I32_Default, \ + DataType.U16_Default, DataType.U16_Default) \ + .dtype_format(DataType.U32_Default, DataType.I32_Default, \ + DataType.U32_Default, DataType.U32_Default) \ + .dtype_format(DataType.U64_Default, DataType.I32_Default, \ + DataType.U64_Default, DataType.U64_Default) \ + .dtype_format(DataType.F16_Default, DataType.I32_Default, \ + DataType.F16_Default, DataType.F16_Default) \ + .dtype_format(DataType.F32_Default, DataType.I32_Default, \ + DataType.F32_Default, DataType.F32_Default) \ + .dtype_format(DataType.F64_Default, DataType.I32_Default, \ + DataType.F64_Default, DataType.F64_Default) \ + .dtype_format(DataType.BOOL_Default, DataType.I32_Default, \ + DataType.BOOL_Default, DataType.BOOL_Default) \ + .dtype_format(DataType.I8_Default, DataType.I64_Default, \ + DataType.I8_Default, DataType.I8_Default) \ + .dtype_format(DataType.I16_Default, DataType.I64_Default, \ + DataType.I16_Default, DataType.I16_Default) \ + .dtype_format(DataType.I32_Default, DataType.I64_Default, \ + DataType.I32_Default, DataType.I32_Default) \ + .dtype_format(DataType.I64_Default, DataType.I64_Default, \ + DataType.I64_Default, DataType.I64_Default) \ + .dtype_format(DataType.U8_Default, DataType.I64_Default, \ + DataType.U8_Default, DataType.U8_Default) \ + .dtype_format(DataType.U16_Default, DataType.I64_Default, \ + DataType.U16_Default, DataType.U16_Default) \ + .dtype_format(DataType.U32_Default, DataType.I64_Default, \ + DataType.U32_Default, DataType.U32_Default) \ + .dtype_format(DataType.U64_Default, DataType.I64_Default, \ + DataType.U64_Default, DataType.U64_Default) \ + .dtype_format(DataType.F16_Default, DataType.I64_Default, \ + DataType.F16_Default, DataType.F16_Default) \ + .dtype_format(DataType.F32_Default, DataType.I64_Default, \ + DataType.F32_Default, DataType.F32_Default) \ + .dtype_format(DataType.F64_Default, DataType.I64_Default, \ + DataType.F64_Default, DataType.F64_Default) \ + .dtype_format(DataType.BOOL_Default, DataType.I64_Default, \ + DataType.BOOL_Default, DataType.BOOL_Default) \ + .dtype_format(DataType.I8_Default, DataType.I64_Default, \ + DataType.I8_Default, DataType.I8_Default) \ + .dtype_format(DataType.I16_Default, DataType.I64_Default, \ + DataType.I16_Default, DataType.I16_Default) \ + .dtype_format(DataType.I32_Default, DataType.I64_Default, \ + DataType.I32_Default, DataType.I32_Default) \ + .dtype_format(DataType.I64_Default, DataType.I64_Default, \ + DataType.I64_Default, DataType.I64_Default) \ + .dtype_format(DataType.U8_Default, DataType.I64_Default, \ + DataType.U8_Default, DataType.U8_Default) \ + .dtype_format(DataType.U16_Default, DataType.I64_Default, \ + DataType.U16_Default, DataType.U16_Default) \ + .dtype_format(DataType.U32_Default, DataType.I64_Default, \ + DataType.U32_Default, DataType.U32_Default) \ + .dtype_format(DataType.U64_Default, DataType.I64_Default, \ + DataType.U64_Default, DataType.U64_Default) \ + .dtype_format(DataType.F16_Default, DataType.I64_Default, \ + DataType.F16_Default, DataType.F16_Default) \ + .dtype_format(DataType.F32_Default, DataType.I64_Default, \ + DataType.F32_Default, DataType.F32_Default) \ + .dtype_format(DataType.F64_Default, DataType.I64_Default, \ + DataType.F64_Default, DataType.F64_Default) \ + .dtype_format(DataType.BOOL_Default, DataType.I64_Default, \ + DataType.BOOL_Default, DataType.BOOL_Default) \ + .get_op_info() + +@op_info_register(cache_swap_table_op_info) +def _cache_swap_table_aicpu(): + """CacheSwapTable AiCPU register""" + return diff --git a/mindspore/ops/_op_impl/aicpu/search_cache_idx.py b/mindspore/ops/_op_impl/aicpu/search_cache_idx.py new file mode 100644 index 0000000000..f83c79f3ba --- /dev/null +++ b/mindspore/ops/_op_impl/aicpu/search_cache_idx.py @@ -0,0 +1,51 @@ +# Copyright 2020 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ + +"""EmbeddingLookup op""" +from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType + +search_cache_idx_op_info = AiCPURegOp("SearchCacheIdx") \ + .fusion_type("OPAQUE") \ + .input(0, "hashmap", "required") \ + .input(1, "indices", "required") \ + .input(2, "step", "required") \ + .input(3, "emb_max_num", "required") \ + .input(4, "cache_max_num", "required") \ + .output(0, "cache_idx", "required") \ + .output(1, "miss_idx_1d", "required") \ + .output(2, "miss_emb_idx", "required") \ + .dtype_format(DataType.I32_Default, DataType.I32_Default, + DataType.I32_Default, DataType.I32_Default, DataType.I32_Default, + DataType.I32_Default, DataType.I32_Default, + DataType.I32_Default) \ + .dtype_format(DataType.I64_Default, DataType.I64_Default, + DataType.I32_Default, DataType.I32_Default, DataType.I32_Default, + DataType.I64_Default, DataType.I64_Default, + DataType.I64_Default) \ + .dtype_format(DataType.I32_Default, DataType.I32_Default, + DataType.I64_Default, DataType.I64_Default, DataType.I64_Default, + DataType.I32_Default, DataType.I32_Default, + DataType.I32_Default) \ + .dtype_format(DataType.I64_Default, DataType.I64_Default, + DataType.I64_Default, DataType.I64_Default, DataType.I64_Default, + DataType.I64_Default, DataType.I64_Default, + DataType.I64_Default) \ + .get_op_info() + + +@op_info_register(search_cache_idx_op_info) +def _search_cache_idx_aicpu(): + """SearchCacheIdx AiCPU register""" + return diff --git a/mindspore/ops/_op_impl/aicpu/update_cache.py b/mindspore/ops/_op_impl/aicpu/update_cache.py new file mode 100644 index 0000000000..a6a93236bd --- /dev/null +++ b/mindspore/ops/_op_impl/aicpu/update_cache.py @@ -0,0 +1,44 @@ +# Copyright 2020 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ + +"""UpdateCache op""" +from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType + +update_cache_op_info = AiCPURegOp("UpdateCache") \ + .fusion_type("OPAQUE") \ + .input(0, "input_x", "required") \ + .input(1, "indices", "required") \ + .input(2, "update", "required") \ + .input(3, "max_num", "required") \ + .output(0, "out", "required") \ + .dtype_format(DataType.I32_Default, DataType.I32_Default, + DataType.I32_Default, DataType.I32_Default, DataType.I32_Default) \ + .dtype_format(DataType.F32_Default, DataType.I32_Default, + DataType.F32_Default, DataType.I32_Default, DataType.F32_Default) \ + .dtype_format(DataType.I64_Default, DataType.I32_Default, + DataType.I64_Default, DataType.I32_Default, DataType.I64_Default) \ + .dtype_format(DataType.I32_Default, DataType.I64_Default, + DataType.I32_Default, DataType.I64_Default, DataType.I32_Default) \ + .dtype_format(DataType.F32_Default, DataType.I64_Default, + DataType.F32_Default, DataType.I64_Default, DataType.F32_Default) \ + .dtype_format(DataType.I64_Default, DataType.I64_Default, + DataType.I64_Default, DataType.I64_Default, DataType.I64_Default) \ + .get_op_info() + + +@op_info_register(update_cache_op_info) +def _update_cache_aicpu(): + """UpdateCache AiCPU register""" + return diff --git a/mindspore/ops/operations/__init__.py b/mindspore/ops/operations/__init__.py index f4adcfab55..64b05578ee 100644 --- a/mindspore/ops/operations/__init__.py +++ b/mindspore/ops/operations/__init__.py @@ -89,6 +89,7 @@ from ._thor_ops import (CusBatchMatMul, CusCholeskyTrsm, CusFusedAbsMax1, CusImg CusMatMulCubeDenseRight, CusMatMulCubeFraczLeftCast, Im2Col, UpdateThorGradient, Cholesky) from .sparse_ops import SparseToDense +from ._cache_ops import CacheSwapHashmap, SearchCacheIdx, CacheSwapTable, UpdateCache, MapCacheIdx __all__ = [ 'Unique', diff --git a/mindspore/ops/operations/_cache_ops.py b/mindspore/ops/operations/_cache_ops.py new file mode 100644 index 0000000000..f30e9a5a5d --- /dev/null +++ b/mindspore/ops/operations/_cache_ops.py @@ -0,0 +1,267 @@ +# Copyright 2020 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +"""cache_ops""" +from ..._checkparam import Validator as validator +from ...common import dtype as mstype +from ..primitive import PrimitiveWithInfer, prim_attr_register +from .. import signature as sig + + +class UpdateCache(PrimitiveWithInfer): + """ + Update the value fo input_x, similar to ScatterNdUpdate. + The diffirent is that UpdateCache will not update when indices < 0 or indices >= max_num. + + Inputs: + - **input_x** (Parameter) - Parameter which is going to be updated. + - **indices** (Tensor) - Update indices of input_x. + - **updates** (Tensor) - The update values. + + Outputs: + - **out** (Tensor) - Returns a [1] Tensor, which is not usefull. + """ + __mindspore_signature__ = ( + sig.make_sig('input_x', sig.sig_rw.RW_WRITE, + dtype=sig.sig_dtype.T), + sig.make_sig('indices', dtype=sig.sig_dtype.T1), + sig.make_sig('updates', dtype=sig.sig_dtype.T), + sig.make_sig('max_num', dtype=sig.sig_dtype.T1) + ) + + @prim_attr_register + def __init__(self): + """init UpdateCache""" + + self.init_prim_io_names(inputs=['input_x', 'indices', 'update', 'max_num'], + outputs=['out']) + + def infer_shape(self, input_x_shape, indices_shape, update_shape, max_num_shape): + + if len(indices_shape) < 2: + raise ValueError("The dimension of 'indices' in UpdateCache must >= 2, " + "but got %d." % len(indices_shape)) + return [1] + + def infer_dtype(self, input_x_dtype, indices_dtype, update_dtype, max_num_dtype): + args = {"indices": indices_dtype} + validator.check_tensor_type_same(args, mstype.int_type, self.name) + return input_x_dtype + + +class SearchCacheIdx(PrimitiveWithInfer): + """ + Search the keys of a hashmap, and return the values. + + Inputs: + - **hashmap** (Parameter) - The dim of hashmap is (n, 4), which cols represent the `key, value, step, tag`. + `key, value`: Map the indices of big table and cache table. + `step`: The resent step, when searching the key, it will be updated at the same time. + `step` can make sure the indices which are using in the last step will not be deleted in hashmap. + `tag`: We use linear probing(`h(k, i) = (h(k) + i) % m`) to solve hash conflicts. + tag is the count of linear probing times of the key. If `tag == 0`, means that the entry is empty. + The Hash Function is: + `((0.6180339 * key) - floor(0.618033 * key)) * hashmap_length`, in order to avoid data clustering. + - **indices** (Tensor) - The indices which are keys of hashmap. + - **step** (int) - The current step when searching. + - **emb_max_num** (int) - Max length of big table. + To avoid searching when `indices >= emb_max_num`, and make value = `cache_max_num`. + - **cache_max_num** (int) - Max length of cache table. + + Outputs: + - **cache_idx** (Tensor) - Result of searched value, if search missed, value = -1. + - **miss_idx** (Tensor) - The index of Tensor indices which search missed. + If search success, miss_idx[i] = -1. + - **miss_emb_idx** (Tensor) - The value of Tensor indices which search missed. + If search success, miss_emb_idx[i] = -1. + Examples: + >>> hashmap = Parameter(Tensor(np.array([[0, 0, 0, 0], + [10, 5, -5, 1], + [2, 1, -5, 1], + [15, 7, -5, 2], + [0, 0, 0, 0], + [0, 0, 0, 0], + [0, 0, 0, 0], + [0, 0, 0, 0], + [3, 3, -5, 1], + [21, 9, -5, 1]], np.int32)), name="hashmap") + >>> indices = Tensor(np.array([10, 2, 25, 5, 3], np.int32)) + >>> step = 0, emb_max_num = 25, cache_max_num = 10 + >>> ops = P.SearchCacheIdx() + >>> cache_idx, miss_idx, miss_emb_idx = ops(hashmap, indices, step, emb_max_num, cache_max_num) + cache_idx : [5, 1, 10, -1, 3] + miss_idx : [-1, -1, -1, 3, -1] + miss_emb_idx : [-1, -1, -1, 5, -1] + hashmap after search : [[0, 0, 0, 0], + [10, 5, 0, 1], + [2, 1, 0, 1], + [15, 7, -5, 2], + [0, 0, 0, 0], + [0, 0, 0, 0], + [0, 0, 0, 0], + [0, 0, 0, 0], + [3, 3, 0, 1], + [21, 9, -5, 1]] + """ + __mindspore_signature__ = ( + sig.make_sig('hashmap', sig.sig_rw.RW_WRITE, + dtype=sig.sig_dtype.T), + sig.make_sig('indices', dtype=sig.sig_dtype.T), + sig.make_sig('step', dtype=sig.sig_dtype.T), + sig.make_sig('emb_max_num', dtype=sig.sig_dtype.T), + sig.make_sig('cache_max_num', dtype=sig.sig_dtype.T) + ) + + @prim_attr_register + def __init__(self): + """init SearchCacheIdx""" + + self.init_prim_io_names(inputs=['hashmap', 'indices', 'step', 'emb_max_num', 'cache_max_num'], + outputs=['cache_idx', 'miss_idx', 'miss_emb_idx']) + + def infer_shape(self, hashmap_shape, indices_shape, step_shape, emb_max_num_shape, cache_max_num_shape): + + if len(hashmap_shape) != 2: + raise ValueError("The dimension of 'hashmap' in SearchCacheIdx must be 2, " + "but got %d." % len(hashmap_shape)) + out_shape = (indices_shape, indices_shape, indices_shape) + return out_shape + + def infer_dtype(self, hashmap_dtype, indices_dtype, step_dtype, emb_max_num_dtype, cache_max_num_dtype): + args = {"hashmap": hashmap_dtype, "indices": indices_dtype} + validator.check_tensor_type_same(args, mstype.int_type, self.name) + out_dtype = (hashmap_dtype, hashmap_dtype, hashmap_dtype) + return out_dtype + + +class CacheSwapHashmap(PrimitiveWithInfer): + """ + Delete a hashmap entry,and insert a new key to hashmap, return the key and value of delete entry. + + Inputs: + - **hashmap** (Parameter) - Same to operation SearchCacheIdx. + - **miss_emb_idx** (Tensor) - The keys which are going to insert, -1 is skipped. It is the result + - **step** (int) - The current step. + + Outputs: + - **swap_cache_idx** (Tensor) - Deleted value of entry, -1 is skipped. + - **old_emb_idx** (Tensor) - Deleted key of entry, -1 is skipped. + """ + __mindspore_signature__ = ( + sig.make_sig('hashmap', sig.sig_rw.RW_WRITE, + dtype=sig.sig_dtype.T), + sig.make_sig('miss_emb_idx', dtype=sig.sig_dtype.T), + sig.make_sig('step', dtype=sig.sig_dtype.T) + ) + + @prim_attr_register + def __init__(self): + """init CacheSwapHashmap""" + + self.init_prim_io_names(inputs=['hashmap', 'miss_emb_idx', 'step'], + outputs=['swap_cache_idx', 'old_emb_idx']) + + def infer_shape(self, hashmap_shape, miss_emb_idx_shape, step_shape): + + if len(hashmap_shape) != 2: + raise ValueError("The dimension of 'hashmap' in CacheSwapHashmap must be 2, " + "but got %d." % len(hashmap_shape)) + + out_shape = (miss_emb_idx_shape, miss_emb_idx_shape) + return out_shape + + def infer_dtype(self, hashmap_dtype, miss_emb_idx_dtype, step_dtype): + args = {"miss_emb_idx": miss_emb_idx_dtype} + validator.check_tensor_type_same(args, mstype.int_type, self.name) + out_dtype = (miss_emb_idx_dtype, miss_emb_idx_dtype) + return out_dtype + + +class CacheSwapTable(PrimitiveWithInfer): + """ + Delete a hashmap entry,and insert a new key to hashmap, return the key and value of delete entry. + + Inputs: + - **cache_table** (Parameter) - The cache table which is on device. + - **swap_cache_idx** (Tensor) - The index of table which need to swap. -1 is skipped. + - **miss_value** (int) - The values which arg going to swap into cache table. + + Outputs: + - **old_value** (Tensor) - The values which are swapped out. + """ + __mindspore_signature__ = ( + sig.make_sig('cache_table', sig.sig_rw.RW_WRITE, + dtype=sig.sig_dtype.T), + sig.make_sig('swap_cache_idx', dtype=sig.sig_dtype.T1), + sig.make_sig('miss_value', dtype=sig.sig_dtype.T) + ) + + @prim_attr_register + def __init__(self): + """init CacheSwapTable""" + + self.init_prim_io_names(inputs=['cache_table', 'swap_cache_idx', 'miss_value'], + outputs=['old_value']) + + def infer_shape(self, cache_table_shape, swap_cache_idx_shape, miss_value_shape): + if len(cache_table_shape) != 2: + raise ValueError( + "cache table shape must be 2, but got %d" % len(cache_table_shape)) + if swap_cache_idx_shape + cache_table_shape[1:] != miss_value_shape: + raise ValueError( + "swap_cache_idx_shape + cache_table_shape[1:] must equal to miss_value_shape") + return miss_value_shape + + def infer_dtype(self, cache_table_dtype, swap_cache_idx_dtype, miss_value_dtype): + args = {"swap_cache_idx": swap_cache_idx_dtype} + validator.check_tensor_type_same(args, mstype.int_type, self.name) + return miss_value_dtype + + +class MapCacheIdx(PrimitiveWithInfer): + """ + MapCacheIdx merge SearchCacheIdx, CacheSwapHashmap, UpdateCache together. + When input an indices tensor, it will output the cache indices which search in hashmap. + """ + __mindspore_signature__ = ( + sig.make_sig('hashmap', sig.sig_rw.RW_WRITE, + dtype=sig.sig_dtype.T), + sig.make_sig('indices', dtype=sig.sig_dtype.T), + sig.make_sig('step', dtype=sig.sig_dtype.T), + sig.make_sig('emb_max_num', dtype=sig.sig_dtype.T), + sig.make_sig('cache_max_num', dtype=sig.sig_dtype.T) + ) + + @prim_attr_register + def __init__(self): + """init MapCacheIdx""" + + self.init_prim_io_names(inputs=['hashmap', 'indices', 'step', 'emb_max_num', 'cache_max_num'], + outputs=['cache_idx', 'old_emb_idx', 'miss_emb_idx', 'swap_cache_idx']) + + def infer_shape(self, hashmap_shape, indices_shape, step_shape, emb_max_num_shape, cache_max_num_shape): + + if len(hashmap_shape) != 2: + raise ValueError("The dimension of 'hashmap' in SearchCacheIdx must be 2, " + "but got %d." % len(hashmap_shape)) + out_shape = (indices_shape, indices_shape, + indices_shape, indices_shape) + return out_shape + + def infer_dtype(self, hashmap_dtype, indices_dtype, step_dtype, emb_max_num_dtype, cache_max_num_dtype): + args = {"hashmap": hashmap_dtype, "indices": indices_dtype} + validator.check_tensor_type_same(args, mstype.int_type, self.name) + out_dtype = (hashmap_dtype, hashmap_dtype, + hashmap_dtype, hashmap_dtype) + return out_dtype diff --git a/tests/st/ops/cpu/test_cache_ops.py b/tests/st/ops/cpu/test_cache_ops.py new file mode 100644 index 0000000000..ef670c9ac4 --- /dev/null +++ b/tests/st/ops/cpu/test_cache_ops.py @@ -0,0 +1,233 @@ +# Copyright 2020 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +import math +import numpy as np +import pytest + +import mindspore.context as context +import mindspore.nn as nn +from mindspore import Tensor +from mindspore import Parameter +from mindspore.ops import operations as P + +context.set_context(mode=context.GRAPH_MODE, + device_target='CPU', save_graphs=True) + + +def hash_func(key, length): + return (int)(((0.6180339 * key) - math.floor(0.6180339 * key)) * length) + + +def init_hashmap(hash_map_length): + key_np = np.array([2, 3, 10, 15, 21], np.int32) + value_np = np.array([1, 3, 5, 7, 9], np.int32) + NULLTAG = 0 + INIT_STEP = -5 + hashmap_np = np.zeros((hash_map_length, 4), np.int32) + for i, key in enumerate(key_np): + entry = hash_func(key, hash_map_length) + count = 1 + while (hashmap_np[entry, 3] != NULLTAG and hashmap_np[entry, 0] != key): + count += 1 + entry = (entry + 1) % hash_map_length + if (hashmap_np[entry, 3] == NULLTAG): + hashmap_np[entry] = [key, value_np[i], INIT_STEP, count] + + return hashmap_np + + +class SearchCacheIdxNet(nn.Cell): + def __init__(self, hashmap_np): + super().__init__() + self.ops = P.SearchCacheIdx() + self.hashmap = Parameter(Tensor(hashmap_np), name="hashmap") + self.emb_max = 25 + self.cache_max = 10 + self.step = 0 + + def construct(self, indices): + return self.ops(self.hashmap, indices, self.step, self.emb_max, self.cache_max) + + +class CacheSwapHashmapNet(nn.Cell): + def __init__(self, hashmap_np): + super().__init__() + self.net = SearchCacheIdxNet(hashmap_np) + self.ops = P.CacheSwapHashmap() + self.step = 0 + self.emb_max = 25 + self.cache_max = 10 + + def construct(self, indices): + _, _, miss_emb_idx = self.net(indices) + return self.ops(self.net.hashmap, miss_emb_idx, self.step) + + +class MapCacheIdxNet(nn.Cell): + def __init__(self, hashmap_np): + super().__init__() + self.ops = P.MapCacheIdx() + self.hashmap = Parameter(Tensor(hashmap_np), name="hashmap") + self.emb_max = 25 + self.cache_max = 10 + self.step = 0 + + def construct(self, indices): + return self.ops(self.hashmap, indices, self.step, self.emb_max, self.cache_max) + + +class UpdateCacheNet(nn.Cell): + def __init__(self, x): + super().__init__() + self.ops = P.UpdateCache() + self.max_num = 9999 + self.x = Parameter(Tensor(x), name='x') + + def construct(self, indices, update): + return self.ops(self.x, indices, update, self.max_num) + + +@pytest.mark.level0 +@pytest.mark.platform_x86_cpu +@pytest.mark.env_onecard +def test_search_cache_idx(): + hashmap_np = init_hashmap(10) + indices_np = np.array([10, 2, 20, 5, 3], np.int32) + search_cache_idx = SearchCacheIdxNet(hashmap_np) + indices = Tensor(indices_np) + cache_idx, miss_idx, miss_emb_idx = search_cache_idx(indices) + + expect_cache_idx = [5, 1, -1, -1, 3] + expect_miss_idx = [-1, -1, 2, 3, -1] + expect_miss_emb_idx = [-1, -1, 20, 5, -1] + + hashmap_np_after_ops = [[0, 0, 0, 0], + [10, 5, 0, 1], + [2, 1, 0, 1], + [15, 7, -5, 2], + [0, 0, 0, 0], + [0, 0, 0, 0], + [0, 0, 0, 0], + [0, 0, 0, 0], + [3, 3, 0, 1], + [21, 9, -5, 1]] + + assert np.allclose(cache_idx.asnumpy(), + np.array(expect_cache_idx, np.int32)) + assert np.allclose(miss_idx.asnumpy(), np.array(expect_miss_idx, np.int32)) + assert np.allclose(miss_emb_idx.asnumpy(), + np.array(expect_miss_emb_idx, np.int32)) + assert np.allclose(search_cache_idx.hashmap.data.asnumpy(), + np.array(hashmap_np_after_ops, np.int32)) + + +@pytest.mark.level0 +@pytest.mark.platform_x86_cpu +@pytest.mark.env_onecard +def test_cache_swap_hashmap(): + hashmap_np = init_hashmap(10) + indices_np = np.array([10, 2, 20, 5, 3], np.int32) + net = CacheSwapHashmapNet(hashmap_np) + indices = Tensor(indices_np) + swap_cache_idx, old_emb_idx = net(indices) + + expect_swap_cache_idx = [-1, -1, 9, 7, -1] + expect_old_emb_idx = [-1, -1, 21, 15, -1] + + hashmap_np_after_ops = [[5, 7, 0, 1], + [10, 5, 0, 1], + [2, 1, 0, 1], + [20, 9, 0, 1], + [20, 9, 0, 0], + [0, 0, 0, 0], + [0, 0, 0, 0], + [0, 0, 0, 0], + [3, 3, 0, 1], + [21, 9, -5, 0]] + + assert np.allclose(swap_cache_idx.asnumpy(), + np.array(expect_swap_cache_idx, np.int32)) + assert np.allclose(old_emb_idx.asnumpy(), + np.array(expect_old_emb_idx, np.int32)) + assert np.allclose(net.net.hashmap.data.asnumpy(), + np.array(hashmap_np_after_ops, np.int32)) + + +@pytest.mark.level0 +@pytest.mark.platform_x86_cpu +@pytest.mark.env_onecard +def test_map_cache_idx(): + hashmap_np = init_hashmap(10) + indices_np = np.array([10, 2, 20, 5, 3], np.int32) + map_cache_idx = MapCacheIdxNet(hashmap_np) + indices = Tensor(indices_np) + cache_idx, old_emb_idx, miss_emb_idx, swap_cache_idx = map_cache_idx( + indices) + + expect_cache_idx = [5, 1, 9, 7, 3] + expect_old_emb_idx = [-1, -1, 21, 15, -1] + expect_miss_emb_idx = [-1, -1, 20, 5, -1] + expect_swap_cache_idx = [-1, -1, 9, 7, -1] + + hashmap_np_after_ops = [[5, 7, 0, 1], + [10, 5, 0, 1], + [2, 1, 0, 1], + [20, 9, 0, 1], + [20, 9, 0, 0], + [0, 0, 0, 0], + [0, 0, 0, 0], + [0, 0, 0, 0], + [3, 3, 0, 1], + [21, 9, -5, 0]] + + assert np.allclose(cache_idx.asnumpy(), + np.array(expect_cache_idx, np.int32)) + assert np.allclose(old_emb_idx.asnumpy(), + np.array(expect_old_emb_idx, np.int32)) + assert np.allclose(miss_emb_idx.asnumpy(), + np.array(expect_miss_emb_idx, np.int32)) + assert np.allclose(swap_cache_idx.asnumpy(), + np.array(expect_swap_cache_idx, np.int32)) + assert np.allclose(map_cache_idx.hashmap.data.asnumpy(), + np.array(hashmap_np_after_ops, np.int32)) + + +@pytest.mark.level0 +@pytest.mark.platform_x86_cpu +@pytest.mark.env_onecard +def test_update_cache(): + x_np = np.array([[2, 3, 4, 5], + [6, 7, 8, 9], + [11, 12, 13, 14], + [1, 2, 3, 4], + [5, 6, 7, 8]], np.int32) + + indices_np = np.array([[-1, 3, 4]], np.int32) + update_np = np.array([[0, 0, 0, 0], + [23, 34, 56, 78], + [44, 55, 66, 77]], np.int32) + + indices = Tensor(indices_np) + update = Tensor(update_np) + + expect = np.array([[2, 3, 4, 5], + [6, 7, 8, 9], + [11, 12, 13, 14], + [23, 34, 56, 78], + [44, 55, 66, 77]], np.int32) + net = UpdateCacheNet(x_np) + out = net(indices, update) + assert np.allclose(net.x.data.asnumpy(), expect) + assert np.allclose(out.asnumpy(), np.array([0], np.int32))