diff --git a/mindspore/nn/optim/momentum.py b/mindspore/nn/optim/momentum.py index 2e74f03264..0b73d5c0c8 100755 --- a/mindspore/nn/optim/momentum.py +++ b/mindspore/nn/optim/momentum.py @@ -24,11 +24,11 @@ from .optimizer import Optimizer _momentum_opt = C.MultitypeFuncGraph("momentum_opt") -@_momentum_opt.register("Function", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "Bool") -def _tensor_run_opt_ext(opt, momentum, learning_rate, gradient, weight, moment, ps_parameter): +@_momentum_opt.register("Function", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "Bool", "Bool") +def _tensor_run_opt_ext(opt, momentum, learning_rate, gradient, weight, moment, ps_parameter, cache_enable): """Apply momentum optimizer to the weight parameter using Tensor.""" success = True - if ps_parameter: + if ps_parameter and not cache_enable: op_shape = P.Shape() _ps_pull = P.Pull() _ps_push = P.Push("ApplyMomentum", []) @@ -146,8 +146,8 @@ class Momentum(Optimizer): lr = self.get_lr() if self.is_group_lr: success = self.hyper_map(F.partial(_momentum_opt, self.opt, self.momentum), lr, gradients, params, moments, - self.ps_parameters) + self.ps_parameters, self.cache_enable) else: success = self.hyper_map(F.partial(_momentum_opt, self.opt, self.momentum, lr), gradients, params, moments, - self.ps_parameters) + self.ps_parameters, self.cache_enable) return success