diff --git a/mindspore/lite/nnacl/fp32_grad/batch_norm.c b/mindspore/lite/nnacl/fp32_grad/batch_norm.c index bee4bf433d..a6d2b20ed8 100644 --- a/mindspore/lite/nnacl/fp32_grad/batch_norm.c +++ b/mindspore/lite/nnacl/fp32_grad/batch_norm.c @@ -33,13 +33,13 @@ static void meanVar(const float *in, int size, int ch, float eps, float *mean, f for (int f = 0; f < ch; ++f) { mean[f] /= N; } - for (int f=0; f< ch; f++) { + for (int f = 0; f < ch; f++) { float tvar = 0; - for (int i =0; i< N; i++) { - float x = in[i*ch +f]; - tvar += (x-mean[f]) *(x-mean[f]); + for (int i = 0; i < N; i++) { + float x = in[i * ch + f]; + tvar += (x - mean[f]) * (x - mean[f]); } - invar[f] = 1.0f/(sqrt(tvar/N+eps)); + invar[f] = 1.0f / (sqrt(tvar / N + eps)); } } diff --git a/mindspore/lite/nnacl/fp32_grad/softmax_grad.c b/mindspore/lite/nnacl/fp32_grad/softmax_grad.c index 8e21a02909..21bcc14188 100644 --- a/mindspore/lite/nnacl/fp32_grad/softmax_grad.c +++ b/mindspore/lite/nnacl/fp32_grad/softmax_grad.c @@ -39,9 +39,9 @@ void SoftmaxGrad(const float *input_ptr, const float *yt_ptr, float *output_ptr, dim /= outter_size; memcpy(output_ptr, yt_ptr, ele_size * sizeof(float)); - int M = input_shape[axis]; - int N = inner_size; - int K = 1; + const int M = input_shape[axis]; + const int N = inner_size; + const int K = 1; for (int i = 0; i < outter_size; i++) { int outter_offset = i * dim; memset(sum_data, 0.0f, inner_size * sizeof(float)); diff --git a/mindspore/lite/src/executor.cc b/mindspore/lite/src/executor.cc index fcd53a46a1..62948814bb 100644 --- a/mindspore/lite/src/executor.cc +++ b/mindspore/lite/src/executor.cc @@ -51,6 +51,7 @@ int Executor::Run(std::vector &in_tensors, std::vector &out_ MS_LOG(ERROR) << "run kernel before_callback failed, name: " << kernel->name(); } } + auto ret = kernel->Run(); if (0 != ret) { MS_LOG(ERROR) << "run kernel failed, name: " << kernel->name();