diff --git a/mindspore/nn/layer/quant.py b/mindspore/nn/layer/quant.py index 19d2034370..6c850e6c70 100644 --- a/mindspore/nn/layer/quant.py +++ b/mindspore/nn/layer/quant.py @@ -83,7 +83,7 @@ class Conv2dBnAct(Cell): Initializer and string are the same as 'weight_init'. Refer to the values of Initializer for more details. Default: 'zeros'. has_bn (bool): Specifies to used batchnorm or not. Default: False. - activation (string): Specifies activation type. The optional values are as following: + activation (Cell): Specifies activation type. The optional values are as following: 'softmax', 'logsoftmax', 'relu', 'relu6', 'tanh', 'gelu', 'sigmoid', 'prelu', 'leakyrelu', 'hswish', 'hsigmoid'. Default: None. @@ -170,7 +170,7 @@ class DenseBnAct(Cell): bias_init (Union[Tensor, str, Initializer, numbers.Number]): The trainable bias_init parameter. The dtype is same as input x. The values of str refer to the function `initializer`. Default: 'zeros'. has_bias (bool): Specifies whether the layer uses a bias vector. Default: True. - activation (str): Regularizer function applied to the output of the layer, eg. 'relu'. Default: None. + activation (Cell): Regularizer function applied to the output of the layer, eg. 'relu'. Default: None. has_bn (bool): Specifies to used batchnorm or not. Default: False. activation (string): Specifies activation type. The optional values are as following: 'softmax', 'logsoftmax', 'relu', 'relu6', 'tanh', 'gelu', 'sigmoid', @@ -403,8 +403,8 @@ class Conv2dBatchNormQuant(Cell): out_channels (int): The number of output channel :math:`C_{out}`. kernel_size (Union[int, tuple]): Specifies the height and width of the 2D convolution window. stride (int): Specifies stride for all spatial dimensions with the same value. - pad_mode: (str): Specifies padding mode. The optional values are "same", "valid", "pad". Default: "same". - padding: (int): Implicit paddings on both sides of the input. Default: 0. + pad_mode (str): Specifies padding mode. The optional values are "same", "valid", "pad". Default: "same". + padding (int): Implicit paddings on both sides of the input. Default: 0. eps (float): Parameters for BatchNormal. Default: 1e-5. momentum (float): Parameters for BatchNormal op. Default: 0.997. weight_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the @@ -590,8 +590,8 @@ class Conv2dQuant(Cell): out_channels (int): The number of output channel :math:`C_{out}`. kernel_size (Union[int, tuple]): Specifies the height and width of the 2D convolution window. stride (int): Specifies stride for all spatial dimensions with the same value. Default: 1. - pad_mode: (str): Specifies padding mode. The optional values are "same", "valid", "pad". Default: "same". - padding: (int): Implicit paddings on both sides of the input. Default: 0. + pad_mode (str): Specifies padding mode. The optional values are "same", "valid", "pad". Default: "same". + padding (int): Implicit paddings on both sides of the input. Default: 0. dilation (int): Specifying the dilation rate to use for dilated convolution. Default: 1. group (int): Split filter into groups, `in_ channels` and `out_channels` should be divisible by the number of groups. Default: 1. @@ -989,7 +989,7 @@ class HSigmoidQuant(_QuantActivation): symmetric=symmetric, narrow_range=narrow_range, quant_delay=quant_delay) - if issubclass(activation, nn.HSwish): + if issubclass(activation, nn.HSigmoid): self.act = activation() else: raise ValueError("Activation should be `nn.HSigmoid`")