diff --git a/mindspore/dataset/transforms/c_transforms.py b/mindspore/dataset/transforms/c_transforms.py index ffe711b106..48e986202c 100644 --- a/mindspore/dataset/transforms/c_transforms.py +++ b/mindspore/dataset/transforms/c_transforms.py @@ -75,28 +75,30 @@ class Slice(cde.SliceOp): Slice operation to extract a tensor out using the given n slices. The functionality of Slice is similar to NumPy indexing feature. - (Currently only rank 1 Tensors are supported) + (Currently only rank-1 tensors are supported). Args: - *slices(Variable length argument list): Maximum `n` number of arguments to slice a tensor of rank `n`. + *slices(Variable length argument list, supported types are, int, list(int), slice, None or Ellipses): + Maximum `n` number of arguments to slice a tensor of rank `n`. One object in slices can be one of: - 1. int: slice this index only. Negative index is supported. - 2. slice object: slice the generated indices from the slice object. Similar to `start:stop:step`. - 3. None: slice the whole dimension. Similar to `:` in python indexing. - 4. Ellipses ...: slice all dimensions between the two slices. + 1. :py:obj:`int`: Slice this index only. Negative index is supported. + 2. :py:obj:`list(int)`: Slice these indices ion the list only. Negative indices are supdeported. + 3. :py:obj:`slice`: Slice the generated indices from the slice object. Similar to `start:stop:step`. + 4. :py:obj:`None`: Slice the whole dimension. Similar to `:` in python indexing. + 5. :py:obj:`Ellipses`: Slice all dimensions between the two slices. Similar to `...` in python indexing. Examples: - >>> # Data before - >>> # | col | - >>> # +---------+ - >>> # | [1,2,3] | - >>> # +---------| - >>> data = data.map(operations=Slice(slice(1,3))) # slice indices 1 and 2 only - >>> # Data after - >>> # | col | - >>> # +------------+ - >>> # | [1,2] | - >>> # +------------| + >>> # Data before + >>> # | col | + >>> # +---------+ + >>> # | [1,2,3] | + >>> # +---------| + >>> data = data.map(operations=Slice(slice(1,3))) # slice indices 1 and 2 only + >>> # Data after + >>> # | col | + >>> # +---------+ + >>> # | [2,3] | + >>> # +---------| """ @check_slice_op @@ -167,7 +169,7 @@ class PadEnd(cde.PadEndOp): Pad input tensor according to `pad_shape`, need to have same rank. Args: - pad_shape (list of `int`): list on integers representing the shape needed. Dimensions that set to `None` will + pad_shape (list(int)): list on integers representing the shape needed. Dimensions that set to `None` will not be padded (i.e., original dim will be used). Shorter dimensions will truncate the values. pad_value (python types (str, bytes, int, float, or bool), optional): value used to pad. Default to 0 or empty string in case of Tensors of strings.