diff --git a/mindspore/ccsrc/dataset/api/de_pipeline.cc b/mindspore/ccsrc/dataset/api/de_pipeline.cc index 65ec8d30f2..1812c0421a 100644 --- a/mindspore/ccsrc/dataset/api/de_pipeline.cc +++ b/mindspore/ccsrc/dataset/api/de_pipeline.cc @@ -23,7 +23,6 @@ #include "dataset/engine/datasetops/source/image_folder_op.h" #include "dataset/engine/datasetops/source/mnist_op.h" #include "dataset/engine/datasetops/source/voc_op.h" -#include "dataset/util/make_unique.h" #include "dataset/core/tensor.h" #include "dataset/engine/dataset_iterator.h" #include "dataset/engine/datasetops/source/manifest_op.h" @@ -119,7 +118,7 @@ Status DEPipeline::AssignRootNode(const DsOpPtr &dataset_op) { return (tree_->As Status DEPipeline::LaunchTreeExec() { RETURN_IF_NOT_OK(tree_->Prepare()); RETURN_IF_NOT_OK(tree_->Launch()); - iterator_ = make_unique(tree_); + iterator_ = std::make_unique(tree_); if (iterator_ == nullptr) RETURN_STATUS_UNEXPECTED("Cannot create an Iterator."); return Status::OK(); } @@ -307,7 +306,7 @@ Status DEPipeline::ParseStorageOp(const py::dict &args, std::shared_ptrSetSchemaFile(ToString(args["schema"])); } else if (!args["schema_json_string"].is_none()) { - std::unique_ptr schema = make_unique(); + std::unique_ptr schema = std::make_unique(); std::string s = ToString(args["schema_json_string"]); RETURN_IF_NOT_OK(schema->LoadSchemaString(s, std::vector())); (void)builder->SetNumRows(schema->num_rows()); @@ -683,7 +682,7 @@ Status DEPipeline::ParseTFReaderOp(const py::dict &args, std::shared_ptr schema = make_unique(); + std::unique_ptr schema = std::make_unique(); if (args.contains("schema_file_path")) { RETURN_IF_NOT_OK(schema->LoadSchemaFile(ToString(args["schema_file_path"]), columns_to_load)); } else { diff --git a/mindspore/ccsrc/dataset/core/global_context.cc b/mindspore/ccsrc/dataset/core/global_context.cc index 7e361a1f2c..3de8e0fcd8 100644 --- a/mindspore/ccsrc/dataset/core/global_context.cc +++ b/mindspore/ccsrc/dataset/core/global_context.cc @@ -55,9 +55,9 @@ Status GlobalContext::Init() { // For testing we can use Dummy pool instead // Create some tensor allocators for the different types and hook them into the pool. - tensor_allocator_ = mindspore::make_unique>(mem_pool_); - cv_tensor_allocator_ = mindspore::make_unique>(mem_pool_); - int_allocator_ = mindspore::make_unique(mem_pool_); + tensor_allocator_ = std::make_unique>(mem_pool_); + cv_tensor_allocator_ = std::make_unique>(mem_pool_); + int_allocator_ = std::make_unique(mem_pool_); return Status::OK(); } diff --git a/mindspore/ccsrc/dataset/core/tensor.cc b/mindspore/ccsrc/dataset/core/tensor.cc index 6aa34fa342..8f0eae459a 100644 --- a/mindspore/ccsrc/dataset/core/tensor.cc +++ b/mindspore/ccsrc/dataset/core/tensor.cc @@ -28,7 +28,6 @@ #include "dataset/core/global_context.h" #include "dataset/core/pybind_support.h" #include "dataset/core/tensor_shape.h" -#include "dataset/util/make_unique.h" namespace py = pybind11; namespace mindspore { @@ -53,7 +52,7 @@ namespace dataset { Tensor::Tensor(const TensorShape &shape, const DataType &type) : shape_(shape), type_(type), data_(nullptr) { // grab the mem pool from global context and create the allocator for char data area std::shared_ptr global_pool = GlobalContext::Instance()->mem_pool(); - data_allocator_ = mindspore::make_unique>(global_pool); + data_allocator_ = std::make_unique>(global_pool); } Tensor::Tensor(const TensorShape &shape, const DataType &type, const unsigned char *data) : Tensor(shape, type) { @@ -137,7 +136,7 @@ Status Tensor::CreateTensor(std::shared_ptr *ptr, py::array arr) { if ((*ptr)->type_ == DataType::DE_UNKNOWN) RETURN_STATUS_UNEXPECTED("Invalid data type."); std::shared_ptr global_pool = GlobalContext::Instance()->mem_pool(); - (*ptr)->data_allocator_ = mindspore::make_unique>(global_pool); + (*ptr)->data_allocator_ = std::make_unique>(global_pool); static_cast((*ptr)->StartAddr()); int64_t byte_size = (*ptr)->SizeInBytes(); unsigned char *data = static_cast(arr.request().ptr); diff --git a/mindspore/ccsrc/dataset/engine/data_buffer.cc b/mindspore/ccsrc/dataset/engine/data_buffer.cc index a0f47512ec..4aed994d3c 100644 --- a/mindspore/ccsrc/dataset/engine/data_buffer.cc +++ b/mindspore/ccsrc/dataset/engine/data_buffer.cc @@ -40,7 +40,7 @@ Status DataBuffer::CreateDataBuffer( case DatasetType::kTf: { // This type of buffer is for TF record data. // Allocate derived class version for a TF buffers - new_data_buffer = mindspore::make_unique(id, kDeBFlagNone, storage_client); + new_data_buffer = std::make_unique(id, kDeBFlagNone, storage_client); break; } default: { diff --git a/mindspore/ccsrc/dataset/engine/data_schema.cc b/mindspore/ccsrc/dataset/engine/data_schema.cc index 68666796be..4fe5d665c6 100644 --- a/mindspore/ccsrc/dataset/engine/data_schema.cc +++ b/mindspore/ccsrc/dataset/engine/data_schema.cc @@ -26,8 +26,8 @@ #include "common/utils.h" #include "dataset/util/status.h" #include "dataset/core/tensor_shape.h" -#include "dataset/util/make_unique.h" #include "utils/log_adapter.h" +#include "dataset/util/de_error.h" namespace mindspore { namespace dataset { @@ -58,7 +58,7 @@ ColDescriptor::ColDescriptor(const std::string &col_name, DataType col_type, Ten // our shape. Otherwise, set our shape to be empty. if (in_shape != nullptr) { // Create a shape and copy construct it into our column's shape. - tensor_shape_ = mindspore::make_unique(*in_shape); + tensor_shape_ = std::make_unique(*in_shape); } else { tensor_shape_ = nullptr; } @@ -75,7 +75,7 @@ ColDescriptor::ColDescriptor(const std::string &col_name, DataType col_type, Ten ColDescriptor::ColDescriptor(const ColDescriptor &in_cd) : type_(in_cd.type_), rank_(in_cd.rank_), tensor_impl_(in_cd.tensor_impl_), col_name_(in_cd.col_name_) { // If it has a tensor shape, make a copy of it with our own unique_ptr. - tensor_shape_ = in_cd.hasShape() ? mindspore::make_unique(in_cd.shape()) : nullptr; + tensor_shape_ = in_cd.hasShape() ? std::make_unique(in_cd.shape()) : nullptr; } // Assignment overload @@ -86,7 +86,7 @@ ColDescriptor &ColDescriptor::operator=(const ColDescriptor &in_cd) { tensor_impl_ = in_cd.tensor_impl_; col_name_ = in_cd.col_name_; // If it has a tensor shape, make a copy of it with our own unique_ptr. - tensor_shape_ = in_cd.hasShape() ? mindspore::make_unique(in_cd.shape()) : nullptr; + tensor_shape_ = in_cd.hasShape() ? std::make_unique(in_cd.shape()) : nullptr; } return *this; } diff --git a/mindspore/ccsrc/dataset/engine/datasetops/batch_op.cc b/mindspore/ccsrc/dataset/engine/datasetops/batch_op.cc index 7c5d4bd4c8..8778fe1b45 100644 --- a/mindspore/ccsrc/dataset/engine/datasetops/batch_op.cc +++ b/mindspore/ccsrc/dataset/engine/datasetops/batch_op.cc @@ -59,8 +59,8 @@ Status BatchOp::operator()() { TaskManager::FindMe()->Post(); int32_t epoch_num = 0, batch_num = 0, cnt = 0; TensorRow new_row; - std::unique_ptr table = make_unique(); - child_iterator_ = mindspore::make_unique(this, 0, 0); + std::unique_ptr table = std::make_unique(); + child_iterator_ = std::make_unique(this, 0, 0); RETURN_IF_NOT_OK(child_iterator_->FetchNextTensorRow(&new_row)); column_name_map_ = child_iterator_->col_name_id_map(); int32_t cur_batch_size = 0; @@ -72,7 +72,7 @@ Status BatchOp::operator()() { if (table->size() == static_cast(cur_batch_size)) { RETURN_IF_NOT_OK(worker_queues_[cnt++ % num_workers_]->EmplaceBack( std::make_pair(std::move(table), CBatchInfo(epoch_num, batch_num++, cnt - epoch_num)))); - table = make_unique(); + table = std::make_unique(); RETURN_IF_NOT_OK(GetBatchSize(&cur_batch_size, CBatchInfo(epoch_num, batch_num, cnt - epoch_num))); } RETURN_IF_NOT_OK(child_iterator_->FetchNextTensorRow(&new_row)); @@ -82,7 +82,7 @@ Status BatchOp::operator()() { RETURN_IF_NOT_OK(worker_queues_[cnt++ % num_workers_]->EmplaceBack( std::make_pair(std::move(table), CBatchInfo(epoch_num, batch_num++, cnt - epoch_num)))); } - table = make_unique(); // this drops when drop == true + table = std::make_unique(); // this drops when drop == true // end of the current epoch, batch_num should start from 0 again batch_num = 0; epoch_num++; @@ -153,9 +153,9 @@ Status BatchOp::WorkerEntry(int32_t workerId) { RETURN_IF_NOT_OK(worker_queues_[workerId]->PopFront(&table_pair)); while (table_pair.second.ctrl_ != batchCtrl::kQuit) { if (table_pair.second.ctrl_ == batchCtrl::kEOE) { - RETURN_IF_NOT_OK(out_connector_->Add(workerId, make_unique(0, DataBuffer::kDeBFlagEOE))); + RETURN_IF_NOT_OK(out_connector_->Add(workerId, std::make_unique(0, DataBuffer::kDeBFlagEOE))); } else if (table_pair.second.ctrl_ == batchCtrl::kEOF) { - RETURN_IF_NOT_OK(out_connector_->Add(workerId, make_unique(0, DataBuffer::kDeBFlagEOF))); + RETURN_IF_NOT_OK(out_connector_->Add(workerId, std::make_unique(0, DataBuffer::kDeBFlagEOF))); } else if (table_pair.second.ctrl_ == batchCtrl::kNoCtrl) { std::unique_ptr db = nullptr; RETURN_IF_NOT_OK(MakeBatchedBuffer(std::move(table_pair), &db)); @@ -170,8 +170,8 @@ Status BatchOp::MakeBatchedBuffer(std::pair, CBatc std::unique_ptr *db) { RETURN_UNEXPECTED_IF_NULL(table_pair.first); if (!input_column_names_.empty()) RETURN_IF_NOT_OK(MapColumns(&table_pair)); // pass it through pyfunc - (*db) = make_unique(table_pair.second.batch_num_, DataBuffer::kDeBFlagNone); - std::unique_ptr dest_table = make_unique(); + (*db) = std::make_unique(table_pair.second.batch_num_, DataBuffer::kDeBFlagNone); + std::unique_ptr dest_table = std::make_unique(); RETURN_IF_NOT_OK(BatchRows(&table_pair.first, &dest_table, table_pair.first->size())); (*db)->set_tensor_table(std::move(dest_table)); (*db)->set_column_name_map(column_name_map_); diff --git a/mindspore/ccsrc/dataset/engine/datasetops/dataset_op.cc b/mindspore/ccsrc/dataset/engine/datasetops/dataset_op.cc index d3b85b84fb..f51c2a1539 100644 --- a/mindspore/ccsrc/dataset/engine/datasetops/dataset_op.cc +++ b/mindspore/ccsrc/dataset/engine/datasetops/dataset_op.cc @@ -80,9 +80,9 @@ void DatasetOp::CreateConnector(int32_t num_producers, int32_t num_consumers) { MS_LOG(INFO) << "Creating connector in tree operator: " << operator_id_ << ". Producer: " << num_producers << ". Consumer: " << num_consumers << "."; if (oc_queue_size_ > 0) { - out_connector_ = mindspore::make_unique(num_producers, // The number of producers - num_consumers, // Only one consumer (the training App) - oc_queue_size_); + out_connector_ = std::make_unique(num_producers, // The number of producers + num_consumers, // Only one consumer (the training App) + oc_queue_size_); } else { // Some op's may choose not to have an output connector MS_LOG(INFO) << "Bypassed connector creation for tree operator: " << operator_id_ << "."; @@ -149,7 +149,7 @@ Status DatasetOp::GetNextInput(std::unique_ptr *p_buffer, int32_t wo // The base class implementation simply flows the eoe message to output. Derived classes // may override if they need to perform special eoe handling. Status DatasetOp::EoeReceived(int32_t worker_id) { - std::unique_ptr eoe_buffer = mindspore::make_unique(0, DataBuffer::kDeBFlagEOE); + std::unique_ptr eoe_buffer = std::make_unique(0, DataBuffer::kDeBFlagEOE); return (out_connector_->Add(static_cast(worker_id), std::move(eoe_buffer))); } @@ -157,7 +157,7 @@ Status DatasetOp::EoeReceived(int32_t worker_id) { // The base class implementation simply flows the eof message to output. Derived classes // may override if they need to perform special eof handling. Status DatasetOp::EofReceived(int32_t worker_id) { - std::unique_ptr eof_buffer = mindspore::make_unique(0, DataBuffer::kDeBFlagEOF); + std::unique_ptr eof_buffer = std::make_unique(0, DataBuffer::kDeBFlagEOF); return (out_connector_->Add(static_cast(worker_id), std::move(eof_buffer))); } diff --git a/mindspore/ccsrc/dataset/engine/datasetops/device_queue_op.cc b/mindspore/ccsrc/dataset/engine/datasetops/device_queue_op.cc index 3c2eea16ee..71e4ce64a4 100644 --- a/mindspore/ccsrc/dataset/engine/datasetops/device_queue_op.cc +++ b/mindspore/ccsrc/dataset/engine/datasetops/device_queue_op.cc @@ -225,7 +225,7 @@ Status DeviceQueueOp::SendDataToCPU() { MS_LOG(INFO) << "Device queue, sending data to CPU."; int64_t total_batch = 0; - std::unique_ptr child_iterator = mindspore::make_unique(this, 0, 0); + std::unique_ptr child_iterator = std::make_unique(this, 0, 0); while (!(child_iterator->eof_handled())) { TensorRow curr_row; RETURN_IF_NOT_OK(child_iterator->FetchNextTensorRow(&curr_row)); diff --git a/mindspore/ccsrc/dataset/engine/datasetops/map_op.cc b/mindspore/ccsrc/dataset/engine/datasetops/map_op.cc index c9f1f98ae0..b6d603bac9 100644 --- a/mindspore/ccsrc/dataset/engine/datasetops/map_op.cc +++ b/mindspore/ccsrc/dataset/engine/datasetops/map_op.cc @@ -179,7 +179,7 @@ Status MapOp::WorkerEntry(int32_t worker_id) { RETURN_IF_NOT_OK(WorkerEntryInit(in_buffer.get(), &keep_input_columns, &to_process_indices, &final_col_name_id_map, &input_columns, &output_columns)); - std::unique_ptr new_tensor_table(mindspore::make_unique()); + std::unique_ptr new_tensor_table(std::make_unique()); // Perform the compute function of TensorOp(s) and store the result in new_tensor_table. RETURN_IF_NOT_OK(WorkerCompute(in_buffer.get(), to_process_indices, new_tensor_table.get(), keep_input_columns, &input_columns, &output_columns)); diff --git a/mindspore/ccsrc/dataset/engine/datasetops/parallel_op.cc b/mindspore/ccsrc/dataset/engine/datasetops/parallel_op.cc index d9792312a3..4b2af2250a 100644 --- a/mindspore/ccsrc/dataset/engine/datasetops/parallel_op.cc +++ b/mindspore/ccsrc/dataset/engine/datasetops/parallel_op.cc @@ -48,7 +48,7 @@ Status ParallelOp::CreateWorkerConnector(int32_t worker_connector_size) { // Instantiate the worker connector. This is the internal connector, not the operators // output connector. It has single master consuming from it (num producers is 1), and the number // of workers is the defined count from the op. - worker_connector_ = mindspore::make_unique(num_workers_, num_producers_, worker_connector_size); + worker_connector_ = std::make_unique(num_workers_, num_producers_, worker_connector_size); return Status::OK(); } diff --git a/mindspore/ccsrc/dataset/engine/datasetops/project_op.cc b/mindspore/ccsrc/dataset/engine/datasetops/project_op.cc index 11296f84f4..b87967dde8 100644 --- a/mindspore/ccsrc/dataset/engine/datasetops/project_op.cc +++ b/mindspore/ccsrc/dataset/engine/datasetops/project_op.cc @@ -79,7 +79,7 @@ Status ProjectOp::Project(std::unique_ptr *data_buffer) { new_column_name_mapping[current_column] = i; projected_column_indices.push_back(column_name_mapping[current_column]); } - std::unique_ptr new_tensor_table = mindspore::make_unique(); + std::unique_ptr new_tensor_table = std::make_unique(); while ((*data_buffer)->NumRows() > 0) { TensorRow current_row; RETURN_IF_NOT_OK((*data_buffer)->PopRow(¤t_row)); diff --git a/mindspore/ccsrc/dataset/engine/datasetops/rename_op.cc b/mindspore/ccsrc/dataset/engine/datasetops/rename_op.cc index c09f56141e..725476bf91 100644 --- a/mindspore/ccsrc/dataset/engine/datasetops/rename_op.cc +++ b/mindspore/ccsrc/dataset/engine/datasetops/rename_op.cc @@ -84,13 +84,13 @@ Status RenameOp::operator()() { // we got eoe, now try again until we get eof MS_LOG(INFO) << "Rename operator EOE Received."; - RETURN_IF_NOT_OK(out_connector_->Add(0, std::move(mindspore::make_unique(0, DataBuffer::kDeBFlagEOE)))); + RETURN_IF_NOT_OK(out_connector_->Add(0, std::move(std::make_unique(0, DataBuffer::kDeBFlagEOE)))); MS_LOG(DEBUG) << "Rename operator fetching buffer after EOE."; RETURN_IF_NOT_OK(GetNextInput(&curr_buffer)); } // end of while eof loop MS_LOG(INFO) << "Rename opeerator EOF Received."; - RETURN_IF_NOT_OK(out_connector_->Add(0, std::move(mindspore::make_unique(0, DataBuffer::kDeBFlagEOF)))); + RETURN_IF_NOT_OK(out_connector_->Add(0, std::move(std::make_unique(0, DataBuffer::kDeBFlagEOF)))); return Status::OK(); } diff --git a/mindspore/ccsrc/dataset/engine/datasetops/shuffle_op.cc b/mindspore/ccsrc/dataset/engine/datasetops/shuffle_op.cc index 5dae48ad73..2afafe2128 100644 --- a/mindspore/ccsrc/dataset/engine/datasetops/shuffle_op.cc +++ b/mindspore/ccsrc/dataset/engine/datasetops/shuffle_op.cc @@ -70,7 +70,7 @@ ShuffleOp::ShuffleOp(int32_t shuffle_size, uint32_t shuffle_seed, int32_t op_con rng_(shuffle_seed), buffer_counter_(0), rows_per_buffer_(rows_per_buffer), - shuffle_buffer_(mindspore::make_unique()), + shuffle_buffer_(std::make_unique()), shuffle_last_row_idx_(0), shuffle_buffer_state_(kShuffleStateInit) {} @@ -90,7 +90,7 @@ Status ShuffleOp::SelfReset() { shuffle_seed_ = distribution(random_device); rng_ = std::mt19937_64(shuffle_seed_); } - shuffle_buffer_ = mindspore::make_unique(); + shuffle_buffer_ = std::make_unique(); buffer_counter_ = 0; shuffle_last_row_idx_ = 0; shuffle_buffer_state_ = kShuffleStateInit; @@ -142,7 +142,7 @@ Status ShuffleOp::operator()() { // Create the child iterator to fetch our data from. int32_t worker_id = 0; int32_t child_idx = 0; - child_iterator_ = mindspore::make_unique(this, worker_id, child_idx); + child_iterator_ = std::make_unique(this, worker_id, child_idx); // Main operator loop while (true) { @@ -161,7 +161,7 @@ Status ShuffleOp::operator()() { // Step 1) // Create an output tensor table if one is not created yet. if (!new_buffer_table) { - new_buffer_table = mindspore::make_unique(); + new_buffer_table = std::make_unique(); } // Step 2) @@ -176,7 +176,7 @@ Status ShuffleOp::operator()() { // and send this buffer on it's way up the pipeline. Special case is if this is the // last row then we also send it. if (new_buffer_table->size() == rows_per_buffer_ || shuffle_last_row_idx_ == 0) { - auto new_buffer = mindspore::make_unique(buffer_counter_, DataBuffer::kDeBFlagNone); + auto new_buffer = std::make_unique(buffer_counter_, DataBuffer::kDeBFlagNone); new_buffer->set_tensor_table(std::move(new_buffer_table)); new_buffer->set_column_name_map(column_name_map_); buffer_counter_++; @@ -218,7 +218,7 @@ Status ShuffleOp::operator()() { // Since we overloaded eoeReceived function, we are responsible to flow the EOE up the // pipepline manually now that we are done draining the shuffle buffer MS_LOG(INFO) << "Shuffle operator sending EOE."; - auto eoe_buffer = mindspore::make_unique(0, DataBuffer::kDeBFlagEOE); + auto eoe_buffer = std::make_unique(0, DataBuffer::kDeBFlagEOE); RETURN_IF_NOT_OK(out_connector_->Add(0, std::move(eoe_buffer))); // Do not wait for any reset to be flown down from operators above us. diff --git a/mindspore/ccsrc/dataset/engine/datasetops/source/celeba_op.cc b/mindspore/ccsrc/dataset/engine/datasetops/source/celeba_op.cc index 570fc9f454..0c2e20729e 100644 --- a/mindspore/ccsrc/dataset/engine/datasetops/source/celeba_op.cc +++ b/mindspore/ccsrc/dataset/engine/datasetops/source/celeba_op.cc @@ -40,7 +40,7 @@ Status CelebAOp::Builder::Build(std::shared_ptr *op) { builder_sampler_ = std::make_shared(); } - builder_schema_ = make_unique(); + builder_schema_ = std::make_unique(); RETURN_IF_NOT_OK( builder_schema_->AddColumn(ColDescriptor("image", DataType(DataType::DE_UINT8), TensorImpl::kFlexible, 1))); // label is like this:0 1 0 0 1...... @@ -83,7 +83,7 @@ CelebAOp::CelebAOp(int32_t num_workers, int32_t rows_per_buffer, const std::stri col_name_map_[data_schema_->column(index).name()] = index; } - attr_info_queue_ = make_unique>>(queue_size); + attr_info_queue_ = std::make_unique>>(queue_size); io_block_queues_.Init(num_workers_, queue_size); } @@ -311,7 +311,7 @@ Status CelebAOp::AddIOBlock(std::unique_ptr *data_buffer) { row_count++; if (row_count % rows_per_buffer_ == 0) { RETURN_IF_NOT_OK(io_block_queues_[buff_count++ % num_workers_]->Add( - make_unique(IOBlock(keys, IOBlock::kDeIoBlockNone)))); + std::make_unique(IOBlock(keys, IOBlock::kDeIoBlockNone)))); keys.clear(); } } @@ -320,21 +320,21 @@ Status CelebAOp::AddIOBlock(std::unique_ptr *data_buffer) { if (!keys.empty()) { RETURN_IF_NOT_OK(io_block_queues_[(buff_count++) % num_workers_]->Add( - make_unique(IOBlock(keys, IOBlock::kDeIoBlockNone)))); + std::make_unique(IOBlock(keys, IOBlock::kDeIoBlockNone)))); } if (!BitTest(op_ctrl_flags_, kDeOpRepeated) || BitTest(op_ctrl_flags_, kDeOpLastRepeat)) { RETURN_IF_NOT_OK( - io_block_queues_[(buff_count++) % num_workers_]->Add(make_unique(IOBlock::kDeIoBlockFlagEoe))); + io_block_queues_[(buff_count++) % num_workers_]->Add(std::make_unique(IOBlock::kDeIoBlockFlagEoe))); RETURN_IF_NOT_OK( - io_block_queues_[(buff_count++) % num_workers_]->Add(make_unique(IOBlock::kDeIoBlockFlagEof))); + io_block_queues_[(buff_count++) % num_workers_]->Add(std::make_unique(IOBlock::kDeIoBlockFlagEof))); for (int32_t i = 0; i < num_workers_; i++) { RETURN_IF_NOT_OK( - io_block_queues_[i]->Add(std::move(make_unique(std::vector(), IOBlock::kDeIoBlockNone)))); + io_block_queues_[i]->Add(std::make_unique(std::vector(), IOBlock::kDeIoBlockNone))); } return Status::OK(); } else { // not the last repeat. Acquire lock, sleeps master thread, wait for the wake-up from reset RETURN_IF_NOT_OK( - io_block_queues_[(buff_count++) % num_workers_]->Add(make_unique(IOBlock::kDeIoBlockFlagEoe))); + io_block_queues_[(buff_count++) % num_workers_]->Add(std::make_unique(IOBlock::kDeIoBlockFlagEoe))); RETURN_IF_NOT_OK(wp_.Wait()); // Master thread goes to sleep after it has made all the IOBlocks wp_.Clear(); RETURN_IF_NOT_OK(sampler_->GetNextBuffer(data_buffer)); @@ -349,17 +349,17 @@ Status CelebAOp::WorkerEntry(int32_t worker_id) { RETURN_IF_NOT_OK(io_block_queues_[worker_id]->PopFront(&io_block)); while (io_block != nullptr) { if (io_block->eoe() == true) { - RETURN_IF_NOT_OK(out_connector_->Add(worker_id, std::move(make_unique(0, DataBuffer::kDeBFlagEOE)))); + RETURN_IF_NOT_OK(out_connector_->Add(worker_id, std::make_unique(0, DataBuffer::kDeBFlagEOE))); buffer_id = worker_id; } else if (io_block->eof() == true) { - RETURN_IF_NOT_OK(out_connector_->Add(worker_id, std::move(make_unique(0, DataBuffer::kDeBFlagEOF)))); + RETURN_IF_NOT_OK(out_connector_->Add(worker_id, std::make_unique(0, DataBuffer::kDeBFlagEOF))); } else { std::vector keys; RETURN_IF_NOT_OK(io_block->GetKeys(&keys)); if (keys.empty()) { return Status::OK(); // empty key is a quit signal for workers } - std::unique_ptr db = make_unique(buffer_id, DataBuffer::kDeBFlagNone); + std::unique_ptr db = std::make_unique(buffer_id, DataBuffer::kDeBFlagNone); RETURN_IF_NOT_OK(LoadBuffer(keys, &db)); RETURN_IF_NOT_OK(out_connector_->Add(worker_id, std::move(db))); buffer_id += num_workers_; @@ -370,7 +370,7 @@ Status CelebAOp::WorkerEntry(int32_t worker_id) { } Status CelebAOp::LoadBuffer(const std::vector &keys, std::unique_ptr *db) { - std::unique_ptr deq = make_unique(); + std::unique_ptr deq = std::make_unique(); for (const auto &key : keys) { TensorRow row; RETURN_IF_NOT_OK(LoadTensorRow(image_labels_vec_[key], &row)); diff --git a/mindspore/ccsrc/dataset/engine/datasetops/source/cifar_op.cc b/mindspore/ccsrc/dataset/engine/datasetops/source/cifar_op.cc index 260a4a4dc5..3e64c8a3e6 100644 --- a/mindspore/ccsrc/dataset/engine/datasetops/source/cifar_op.cc +++ b/mindspore/ccsrc/dataset/engine/datasetops/source/cifar_op.cc @@ -47,7 +47,7 @@ Status CifarOp::Builder::Build(std::shared_ptr *ptr) { if (sampler_ == nullptr) { sampler_ = std::make_shared(); } - schema_ = make_unique(); + schema_ = std::make_unique(); TensorShape scalar = TensorShape::CreateScalar(); RETURN_IF_NOT_OK(schema_->AddColumn(ColDescriptor("image", DataType(DataType::DE_UINT8), TensorImpl::kFlexible, 1))); if (cifar_type_ == kCifar10) { @@ -91,7 +91,7 @@ CifarOp::CifarOp(CifarType type, int32_t num_works, int32_t rows_per_buf, const col_name_map_[data_schema_->column(i).name()] = i; } constexpr uint64_t kUtilQueueSize = 512; - cifar_raw_data_block_ = make_unique>>(kUtilQueueSize); + cifar_raw_data_block_ = std::make_unique>>(kUtilQueueSize); io_block_queues_.Init(num_workers_, queue_size); } @@ -114,7 +114,7 @@ Status CifarOp::operator()() { if (row_cnt_ >= num_samples_) break; // enough row read, break for loop if (row_cnt_ % rows_per_buffer_ == 0) { RETURN_IF_NOT_OK(io_block_queues_[buf_cnt_++ % num_workers_]->Add( - make_unique(IOBlock(keys, IOBlock::kDeIoBlockNone)))); + std::make_unique(IOBlock(keys, IOBlock::kDeIoBlockNone)))); keys.clear(); } } @@ -122,21 +122,21 @@ Status CifarOp::operator()() { } if (keys.empty() == false) { RETURN_IF_NOT_OK(io_block_queues_[(buf_cnt_++) % num_workers_]->Add( - make_unique(IOBlock(keys, IOBlock::kDeIoBlockNone)))); + std::make_unique(IOBlock(keys, IOBlock::kDeIoBlockNone)))); } if (!BitTest(op_ctrl_flags_, kDeOpRepeated) || BitTest(op_ctrl_flags_, kDeOpLastRepeat)) { RETURN_IF_NOT_OK( - io_block_queues_[(buf_cnt_++) % num_workers_]->Add(make_unique(IOBlock::kDeIoBlockFlagEoe))); + io_block_queues_[(buf_cnt_++) % num_workers_]->Add(std::make_unique(IOBlock::kDeIoBlockFlagEoe))); RETURN_IF_NOT_OK( - io_block_queues_[(buf_cnt_++) % num_workers_]->Add(make_unique(IOBlock::kDeIoBlockFlagEof))); + io_block_queues_[(buf_cnt_++) % num_workers_]->Add(std::make_unique(IOBlock::kDeIoBlockFlagEof))); for (int32_t i = 0; i < num_workers_; i++) { RETURN_IF_NOT_OK( - io_block_queues_[i]->Add(make_unique(std::vector(), IOBlock::kDeIoBlockNone))); + io_block_queues_[i]->Add(std::make_unique(std::vector(), IOBlock::kDeIoBlockNone))); } return Status::OK(); } else { // not the last repeat. Acquire lock, sleeps master thread, wait for the wake-up from reset RETURN_IF_NOT_OK( - io_block_queues_[(buf_cnt_++) % num_workers_]->Add(make_unique(IOBlock::kDeIoBlockFlagEoe))); + io_block_queues_[(buf_cnt_++) % num_workers_]->Add(std::make_unique(IOBlock::kDeIoBlockFlagEoe))); RETURN_IF_NOT_OK(wp_.Wait()); // Master thread goes to sleep after it has made all the IOBlocks wp_.Clear(); RETURN_IF_NOT_OK(sampler_->GetNextBuffer(&sampler_buffer)); @@ -169,17 +169,17 @@ Status CifarOp::WorkerEntry(int32_t worker_id) { RETURN_IF_NOT_OK(io_block_queues_[worker_id]->PopFront(&io_block)); while (io_block != nullptr) { if (io_block->eoe() == true) { - RETURN_IF_NOT_OK(out_connector_->Add(worker_id, make_unique(0, DataBuffer::kDeBFlagEOE))); + RETURN_IF_NOT_OK(out_connector_->Add(worker_id, std::make_unique(0, DataBuffer::kDeBFlagEOE))); buffer_id = worker_id; } else if (io_block->eof() == true) { - RETURN_IF_NOT_OK(out_connector_->Add(worker_id, make_unique(0, DataBuffer::kDeBFlagEOF))); + RETURN_IF_NOT_OK(out_connector_->Add(worker_id, std::make_unique(0, DataBuffer::kDeBFlagEOF))); } else { std::vector keys; RETURN_IF_NOT_OK(io_block->GetKeys(&keys)); if (keys.empty() == true) { return Status::OK(); // empty key is a quit signal for workers } - std::unique_ptr db = make_unique(buffer_id, DataBuffer::kDeBFlagNone); + std::unique_ptr db = std::make_unique(buffer_id, DataBuffer::kDeBFlagNone); RETURN_IF_NOT_OK(LoadBuffer(keys, &db)); RETURN_IF_NOT_OK(out_connector_->Add(worker_id, std::move(db))); buffer_id += num_workers_; @@ -213,7 +213,7 @@ Status CifarOp::LoadTensorRow(uint64_t index, TensorRow *trow) { // Looping over LoadTensorRow to make 1 DataBuffer. 1 function call produces 1 buffer Status CifarOp::LoadBuffer(const std::vector &keys, std::unique_ptr *db) { - std::unique_ptr deq = make_unique(); + std::unique_ptr deq = std::make_unique(); for (const int64_t &key : keys) { TensorRow trow; RETURN_IF_NOT_OK(LoadTensorRow(key, &trow)); diff --git a/mindspore/ccsrc/dataset/engine/datasetops/source/generator_op.cc b/mindspore/ccsrc/dataset/engine/datasetops/source/generator_op.cc index ceb88ceb0e..37a74f019a 100644 --- a/mindspore/ccsrc/dataset/engine/datasetops/source/generator_op.cc +++ b/mindspore/ccsrc/dataset/engine/datasetops/source/generator_op.cc @@ -173,9 +173,9 @@ Status GeneratorOp::operator()() { bool eof = false; while (!eof) { // Create new buffer each iteration - fetched_buffer = mindspore::make_unique(buffer_id_++, DataBuffer::kDeBFlagNone); + fetched_buffer = std::make_unique(buffer_id_++, DataBuffer::kDeBFlagNone); fetched_buffer->set_column_name_map(column_names_map_); - std::unique_ptr fetched_table = mindspore::make_unique(); + std::unique_ptr fetched_table = std::make_unique(); bool eoe = false; { py::gil_scoped_acquire gil_acquire; @@ -201,12 +201,12 @@ Status GeneratorOp::operator()() { if (eoe) { // Push out EOE upon StopIteration exception from generator MS_LOG(INFO) << "Generator operator sends out EOE."; - std::unique_ptr eoe_buffer = mindspore::make_unique(0, DataBuffer::kDeBFlagEOE); + std::unique_ptr eoe_buffer = std::make_unique(0, DataBuffer::kDeBFlagEOE); RETURN_IF_NOT_OK(out_connector_->Add(0, std::move(eoe_buffer))); if (!BitTest(op_ctrl_flags_, kDeOpRepeated) || BitTest(op_ctrl_flags_, kDeOpLastRepeat)) { // If last repeat or not repeated, push out EOF and exit master loop MS_LOG(INFO) << "Generator operator sends out EOF."; - std::unique_ptr eof_buffer = mindspore::make_unique(0, DataBuffer::kDeBFlagEOF); + std::unique_ptr eof_buffer = std::make_unique(0, DataBuffer::kDeBFlagEOF); RETURN_IF_NOT_OK(out_connector_->Add(0, std::move(eof_buffer))); MS_LOG(INFO) << "Generator operator main execution loop complete."; eof = true; diff --git a/mindspore/ccsrc/dataset/engine/datasetops/source/image_folder_op.cc b/mindspore/ccsrc/dataset/engine/datasetops/source/image_folder_op.cc index b8044fb38a..f6cf377666 100644 --- a/mindspore/ccsrc/dataset/engine/datasetops/source/image_folder_op.cc +++ b/mindspore/ccsrc/dataset/engine/datasetops/source/image_folder_op.cc @@ -39,7 +39,7 @@ Status ImageFolderOp::Builder::Build(std::shared_ptr *ptr) { if (builder_sampler_ == nullptr) { builder_sampler_ = std::make_shared(); } - builder_schema_ = make_unique(); + builder_schema_ = std::make_unique(); TensorShape scalar = TensorShape::CreateScalar(); RETURN_IF_NOT_OK( builder_schema_->AddColumn(ColDescriptor("image", DataType(DataType::DE_UINT8), TensorImpl::kFlexible, 1))); @@ -82,8 +82,8 @@ ImageFolderOp::ImageFolderOp(int32_t num_wkrs, int32_t rows_per_buffer, std::str for (int32_t i = 0; i < data_schema_->NumColumns(); ++i) { col_name_map_[data_schema_->column(i).name()] = i; } - folder_name_queue_ = make_unique>(num_wkrs * queue_size); - image_name_queue_ = make_unique>(num_wkrs * queue_size); + folder_name_queue_ = std::make_unique>(num_wkrs * queue_size); + image_name_queue_ = std::make_unique>(num_wkrs * queue_size); io_block_queues_.Init(num_workers_, queue_size); } @@ -143,7 +143,7 @@ Status ImageFolderOp::operator()() { row_cnt_++; if (row_cnt_ % rows_per_buffer_ == 0) { RETURN_IF_NOT_OK( - io_block_queues_[buf_cnt_++ % num_workers_]->Add(make_unique(keys, IOBlock::kDeIoBlockNone))); + io_block_queues_[buf_cnt_++ % num_workers_]->Add(std::make_unique(keys, IOBlock::kDeIoBlockNone))); keys.clear(); } } @@ -151,21 +151,21 @@ Status ImageFolderOp::operator()() { } if (keys.empty() == false) { RETURN_IF_NOT_OK( - io_block_queues_[(buf_cnt_++) % num_workers_]->Add(make_unique(keys, IOBlock::kDeIoBlockNone))); + io_block_queues_[(buf_cnt_++) % num_workers_]->Add(std::make_unique(keys, IOBlock::kDeIoBlockNone))); } if (!BitTest(op_ctrl_flags_, kDeOpRepeated) || BitTest(op_ctrl_flags_, kDeOpLastRepeat)) { - std::unique_ptr eoe_block = make_unique(IOBlock::kDeIoBlockFlagEoe); - std::unique_ptr eof_block = make_unique(IOBlock::kDeIoBlockFlagEof); + std::unique_ptr eoe_block = std::make_unique(IOBlock::kDeIoBlockFlagEoe); + std::unique_ptr eof_block = std::make_unique(IOBlock::kDeIoBlockFlagEof); RETURN_IF_NOT_OK(io_block_queues_[(buf_cnt_++) % num_workers_]->Add(std::move(eoe_block))); RETURN_IF_NOT_OK(io_block_queues_[(buf_cnt_++) % num_workers_]->Add(std::move(eof_block))); for (int32_t i = 0; i < num_workers_; ++i) { RETURN_IF_NOT_OK( - io_block_queues_[i]->Add(make_unique(std::vector(), IOBlock::kDeIoBlockNone))); + io_block_queues_[i]->Add(std::make_unique(std::vector(), IOBlock::kDeIoBlockNone))); } return Status::OK(); } else { // not the last repeat. Sleep master thread, wait for the wake-up from reset RETURN_IF_NOT_OK( - io_block_queues_[(buf_cnt_++) % num_workers_]->Add(make_unique(IOBlock::kDeIoBlockFlagEoe))); + io_block_queues_[(buf_cnt_++) % num_workers_]->Add(std::make_unique(IOBlock::kDeIoBlockFlagEoe))); RETURN_IF_NOT_OK(wp_.Wait()); // Master thread goes to sleep after it has made all the IOBlocks wp_.Clear(); RETURN_IF_NOT_OK(sampler_->GetNextBuffer(&sampler_buffer)); @@ -182,15 +182,15 @@ Status ImageFolderOp::WorkerEntry(int32_t worker_id) { RETURN_IF_NOT_OK(io_block_queues_[worker_id]->PopFront(&io_block)); while (io_block != nullptr) { if (io_block->eoe() == true) { - RETURN_IF_NOT_OK(out_connector_->Add(worker_id, make_unique(0, DataBuffer::kDeBFlagEOE))); + RETURN_IF_NOT_OK(out_connector_->Add(worker_id, std::make_unique(0, DataBuffer::kDeBFlagEOE))); buffer_id = worker_id; } else if (io_block->eof() == true) { - RETURN_IF_NOT_OK(out_connector_->Add(worker_id, make_unique(0, DataBuffer::kDeBFlagEOF))); + RETURN_IF_NOT_OK(out_connector_->Add(worker_id, std::make_unique(0, DataBuffer::kDeBFlagEOF))); } else { std::vector keys; RETURN_IF_NOT_OK(io_block->GetKeys(&keys)); if (keys.empty() == true) return Status::OK(); // empty key is a quit signal for workers - std::unique_ptr db = make_unique(buffer_id, DataBuffer::kDeBFlagNone); + std::unique_ptr db = std::make_unique(buffer_id, DataBuffer::kDeBFlagNone); RETURN_IF_NOT_OK(LoadBuffer(keys, &db)); RETURN_IF_NOT_OK(out_connector_->Add(worker_id, std::move(db))); buffer_id += num_workers_; @@ -231,7 +231,7 @@ Status ImageFolderOp::LoadTensorRow(ImageLabelPair pairPtr, TensorRow *trow) { // Looping over LoadTensorRow to make 1 DataBuffer. 1 function call produces 1 buffer Status ImageFolderOp::LoadBuffer(const std::vector &keys, std::unique_ptr *db) { - std::unique_ptr deq = make_unique(); + std::unique_ptr deq = std::make_unique(); TensorRow trow; for (const int64_t &key : keys) { RETURN_IF_NOT_OK(this->LoadTensorRow(image_label_pairs_[key], &trow)); diff --git a/mindspore/ccsrc/dataset/engine/datasetops/source/manifest_op.cc b/mindspore/ccsrc/dataset/engine/datasetops/source/manifest_op.cc index 52db199e5b..6907647952 100644 --- a/mindspore/ccsrc/dataset/engine/datasetops/source/manifest_op.cc +++ b/mindspore/ccsrc/dataset/engine/datasetops/source/manifest_op.cc @@ -40,7 +40,7 @@ Status ManifestOp::Builder::Build(std::shared_ptr *ptr) { if (builder_sampler_ == nullptr) { builder_sampler_ = std::make_shared(); } - builder_schema_ = make_unique(); + builder_schema_ = std::make_unique(); RETURN_IF_NOT_OK( builder_schema_->AddColumn(ColDescriptor("image", DataType(DataType::DE_UINT8), TensorImpl::kFlexible, 1))); RETURN_IF_NOT_OK( @@ -105,7 +105,7 @@ Status ManifestOp::AddIoBlock(std::unique_ptr *sampler_buffer) { row_cnt_++; if (row_cnt_ % rows_per_buffer_ == 0) { RETURN_IF_NOT_OK(io_block_queues_[buf_cnt_++ % num_workers_]->Add( - make_unique(IOBlock(keys, IOBlock::kDeIoBlockNone)))); + std::make_unique(IOBlock(keys, IOBlock::kDeIoBlockNone)))); keys.clear(); } } @@ -113,21 +113,21 @@ Status ManifestOp::AddIoBlock(std::unique_ptr *sampler_buffer) { } if (keys.empty() == false) { RETURN_IF_NOT_OK(io_block_queues_[(buf_cnt_++) % num_workers_]->Add( - make_unique(IOBlock(keys, IOBlock::kDeIoBlockNone)))); + std::make_unique(IOBlock(keys, IOBlock::kDeIoBlockNone)))); } if (!BitTest(op_ctrl_flags_, kDeOpRepeated) || BitTest(op_ctrl_flags_, kDeOpLastRepeat)) { RETURN_IF_NOT_OK( - io_block_queues_[(buf_cnt_++) % num_workers_]->Add(make_unique(IOBlock::kDeIoBlockFlagEoe))); + io_block_queues_[(buf_cnt_++) % num_workers_]->Add(std::make_unique(IOBlock::kDeIoBlockFlagEoe))); RETURN_IF_NOT_OK( - io_block_queues_[(buf_cnt_++) % num_workers_]->Add(make_unique(IOBlock::kDeIoBlockFlagEof))); + io_block_queues_[(buf_cnt_++) % num_workers_]->Add(std::make_unique(IOBlock::kDeIoBlockFlagEof))); for (int32_t i = 0; i < num_workers_; i++) { RETURN_IF_NOT_OK( - io_block_queues_[i]->Add(make_unique(std::vector(), IOBlock::kDeIoBlockNone))); + io_block_queues_[i]->Add(std::make_unique(std::vector(), IOBlock::kDeIoBlockNone))); } return Status::OK(); } else { RETURN_IF_NOT_OK( - io_block_queues_[(buf_cnt_++) % num_workers_]->Add(make_unique(IOBlock::kDeIoBlockFlagEoe))); + io_block_queues_[(buf_cnt_++) % num_workers_]->Add(std::make_unique(IOBlock::kDeIoBlockFlagEoe))); RETURN_IF_NOT_OK(wp_.Wait()); // Master thread goes to sleep after it has made all the IOBlocks wp_.Clear(); RETURN_IF_NOT_OK(sampler_->GetNextBuffer(sampler_buffer)); @@ -160,17 +160,17 @@ Status ManifestOp::WorkerEntry(int32_t worker_id) { RETURN_IF_NOT_OK(io_block_queues_[worker_id]->PopFront(&io_block)); while (io_block != nullptr) { if (io_block->eoe() == true) { - RETURN_IF_NOT_OK(out_connector_->Add(worker_id, make_unique(0, DataBuffer::kDeBFlagEOE))); + RETURN_IF_NOT_OK(out_connector_->Add(worker_id, std::make_unique(0, DataBuffer::kDeBFlagEOE))); buffer_id = worker_id; } else if (io_block->eof() == true) { - RETURN_IF_NOT_OK(out_connector_->Add(worker_id, make_unique(0, DataBuffer::kDeBFlagEOF))); + RETURN_IF_NOT_OK(out_connector_->Add(worker_id, std::make_unique(0, DataBuffer::kDeBFlagEOF))); } else { std::vector keys; RETURN_IF_NOT_OK(io_block->GetKeys(&keys)); if (keys.empty()) { return Status::OK(); // empty key is a quit signal for workers } - std::unique_ptr db = make_unique(buffer_id, DataBuffer::kDeBFlagNone); + std::unique_ptr db = std::make_unique(buffer_id, DataBuffer::kDeBFlagNone); RETURN_IF_NOT_OK(LoadBuffer(keys, &db)); RETURN_IF_NOT_OK(out_connector_->Add(worker_id, std::move(db))); buffer_id += num_workers_; @@ -227,7 +227,7 @@ Status ManifestOp::LoadTensorRow(const std::pair &keys, std::unique_ptr *db) { - std::unique_ptr deq = make_unique(); + std::unique_ptr deq = std::make_unique(); for (const auto &key : keys) { TensorRow trow; RETURN_IF_NOT_OK(LoadTensorRow(image_labelname_[static_cast(key)], &trow)); diff --git a/mindspore/ccsrc/dataset/engine/datasetops/source/mindrecord_op.cc b/mindspore/ccsrc/dataset/engine/datasetops/source/mindrecord_op.cc index cb0f135a0d..fbb772af59 100644 --- a/mindspore/ccsrc/dataset/engine/datasetops/source/mindrecord_op.cc +++ b/mindspore/ccsrc/dataset/engine/datasetops/source/mindrecord_op.cc @@ -28,7 +28,6 @@ #include "dataset/engine/datasetops/dataset_op.h" #include "dataset/engine/db_connector.h" #include "dataset/engine/execution_tree.h" -#include "dataset/util/make_unique.h" #include "utils/log_adapter.h" namespace mindspore { @@ -94,19 +93,19 @@ MindRecordOp::MindRecordOp(int32_t num_mind_record_workers, int32_t rows_per_buf io_blk_queues_.Init(num_workers_, op_connector_queue_size); if (!block_reader_) return; for (int32_t i = 0; i < num_workers_; ++i) { - block_buffer_.emplace_back(make_unique>(std::vector{})); + block_buffer_.emplace_back(std::make_unique>(std::vector{})); } } // Private helper method to encapsulate some common construction/reset tasks Status MindRecordOp::Init() { - shard_reader_ = mindspore::make_unique(); + shard_reader_ = std::make_unique(); auto rc = shard_reader_->Open(dataset_file_, num_mind_record_workers_, columns_to_load_, operators_, block_reader_); CHECK_FAIL_RETURN_UNEXPECTED(rc != MSRStatus::FAILED, "MindRecordOp init failed. Error message: " + ErrnoToMessage(rc)); - data_schema_ = mindspore::make_unique(); + data_schema_ = std::make_unique(); std::vector> schema_vec = shard_reader_->get_shard_header()->get_schemas(); // check whether schema exists, if so use the first one @@ -143,7 +142,7 @@ Status MindRecordOp::Init() { } if (!load_all_cols) { - std::unique_ptr tmp_schema = make_unique(); + std::unique_ptr tmp_schema = std::make_unique(); for (std::string colname : columns_to_load_) { CHECK_FAIL_RETURN_UNEXPECTED(colname_to_ind.find(colname) != colname_to_ind.end(), colname + ": doesn't exist"); RETURN_IF_NOT_OK(tmp_schema->AddColumn(data_schema_->column(colname_to_ind[colname]))); @@ -297,7 +296,7 @@ Status MindRecordOp::LoadFloat(TensorShape *new_shape, std::unique_ptr *arr RETURN_IF_NOT_OK(GetFloat(&value, columns_json[column_name], use_double)); *new_shape = TensorShape::CreateScalar(); - *array_data = mindspore::make_unique(1); + *array_data = std::make_unique(1); (*array_data)[0] = value; } else { if (column.hasShape()) { @@ -308,7 +307,7 @@ Status MindRecordOp::LoadFloat(TensorShape *new_shape, std::unique_ptr *arr } int idx = 0; - *array_data = mindspore::make_unique(new_shape->NumOfElements()); + *array_data = std::make_unique(new_shape->NumOfElements()); for (auto &element : columns_json[column_name]) { T value = 0; RETURN_IF_NOT_OK(GetFloat(&value, element, use_double)); @@ -349,7 +348,7 @@ Status MindRecordOp::LoadInt(TensorShape *new_shape, std::unique_ptr *array RETURN_IF_NOT_OK(GetInt(&value, columns_json[column_name])); *new_shape = TensorShape::CreateScalar(); - *array_data = mindspore::make_unique(1); + *array_data = std::make_unique(1); (*array_data)[0] = value; } else { if (column.hasShape()) { @@ -360,7 +359,7 @@ Status MindRecordOp::LoadInt(TensorShape *new_shape, std::unique_ptr *array } int idx = 0; - *array_data = mindspore::make_unique(new_shape->NumOfElements()); + *array_data = std::make_unique(new_shape->NumOfElements()); for (auto &element : columns_json[column_name]) { T value = 0; RETURN_IF_NOT_OK(GetInt(&value, element)); @@ -430,12 +429,14 @@ Status MindRecordOp::WorkerEntry(int32_t worker_id) { RETURN_IF_NOT_OK(io_blk_queues_[worker_id]->PopFront(&io_block)); while (io_block != nullptr) { if (io_block->eoe() == true) { - RETURN_IF_NOT_OK(out_connector_->Add(worker_id, std::move(make_unique(0, DataBuffer::kDeBFlagEOE)))); + RETURN_IF_NOT_OK( + out_connector_->Add(worker_id, std::move(std::make_unique(0, DataBuffer::kDeBFlagEOE)))); RETURN_IF_NOT_OK(io_blk_queues_[worker_id]->PopFront(&io_block)); continue; } if (io_block->eof() == true) { - RETURN_IF_NOT_OK(out_connector_->Add(worker_id, std::move(make_unique(0, DataBuffer::kDeBFlagEOF)))); + RETURN_IF_NOT_OK( + out_connector_->Add(worker_id, std::move(std::make_unique(0, DataBuffer::kDeBFlagEOF)))); RETURN_IF_NOT_OK(io_blk_queues_[worker_id]->PopFront(&io_block)); continue; } @@ -485,9 +486,9 @@ Status MindRecordOp::WorkerEntry(int32_t worker_id) { Status MindRecordOp::GetBufferFromReader(std::unique_ptr *fetched_buffer, int64_t buffer_id, int32_t worker_id) { - *fetched_buffer = mindspore::make_unique(buffer_id, DataBuffer::kDeBFlagNone); + *fetched_buffer = std::make_unique(buffer_id, DataBuffer::kDeBFlagNone); (*fetched_buffer)->set_column_name_map(column_name_mapping_); - std::unique_ptr tensor_table = mindspore::make_unique(); + std::unique_ptr tensor_table = std::make_unique(); for (int32_t i = 0; i < rows_per_buffer_; ++i) { ShardTuple tupled_buffer; if (block_reader_) { @@ -596,22 +597,22 @@ Status MindRecordOp::operator()() { for (int32_t i = 0; i < buffers_needed_; ++i) { if (block_reader_) RETURN_IF_NOT_OK(FetchBlockBuffer(i)); std::vector keys(1, i); - RETURN_IF_NOT_OK( - io_blk_queues_[buf_cnt_++ % num_workers_]->Add(make_unique(IOBlock(keys, IOBlock::kDeIoBlockNone)))); + RETURN_IF_NOT_OK(io_blk_queues_[buf_cnt_++ % num_workers_]->Add( + std::make_unique(IOBlock(keys, IOBlock::kDeIoBlockNone)))); } if (!BitTest(op_ctrl_flags_, kDeOpRepeated) || BitTest(op_ctrl_flags_, kDeOpLastRepeat)) { RETURN_IF_NOT_OK( - io_blk_queues_[(buf_cnt_++) % num_workers_]->Add(make_unique(IOBlock::kDeIoBlockFlagEoe))); + io_blk_queues_[(buf_cnt_++) % num_workers_]->Add(std::make_unique(IOBlock::kDeIoBlockFlagEoe))); RETURN_IF_NOT_OK( - io_blk_queues_[(buf_cnt_++) % num_workers_]->Add(make_unique(IOBlock::kDeIoBlockFlagEof))); + io_blk_queues_[(buf_cnt_++) % num_workers_]->Add(std::make_unique(IOBlock::kDeIoBlockFlagEof))); for (int32_t i = 0; i < num_workers_; i++) { - RETURN_IF_NOT_OK( - io_blk_queues_[i]->Add(std::move(make_unique(std::vector(), IOBlock::kDeIoBlockNone)))); + RETURN_IF_NOT_OK(io_blk_queues_[i]->Add( + std::move(std::make_unique(std::vector(), IOBlock::kDeIoBlockNone)))); } return Status::OK(); } else { // not the last repeat. Acquire lock, sleeps master thread, wait for the wake-up from reset RETURN_IF_NOT_OK( - io_blk_queues_[(buf_cnt_++) % num_workers_]->Add(make_unique(IOBlock::kDeIoBlockFlagEoe))); + io_blk_queues_[(buf_cnt_++) % num_workers_]->Add(std::make_unique(IOBlock::kDeIoBlockFlagEoe))); // reset our buffer count and go to loop again. RETURN_IF_NOT_OK(shard_reader_wait_post_.Wait()); @@ -655,7 +656,7 @@ Status MindRecordOp::LaunchThreadAndInitOp() { } Status MindRecordOp::CountTotalRows(const std::string dataset_path, int64_t *count) { - std::unique_ptr shard_reader = mindspore::make_unique(); + std::unique_ptr shard_reader = std::make_unique(); MSRStatus rc = shard_reader->CountTotalRows(dataset_path, count); if (rc == MSRStatus::FAILED) { RETURN_STATUS_UNEXPECTED("MindRecordOp count total rows failed."); diff --git a/mindspore/ccsrc/dataset/engine/datasetops/source/mnist_op.cc b/mindspore/ccsrc/dataset/engine/datasetops/source/mnist_op.cc index f76fb9314d..3431e58aea 100644 --- a/mindspore/ccsrc/dataset/engine/datasetops/source/mnist_op.cc +++ b/mindspore/ccsrc/dataset/engine/datasetops/source/mnist_op.cc @@ -43,7 +43,7 @@ Status MnistOp::Builder::Build(std::shared_ptr *ptr) { if (builder_sampler_ == nullptr) { builder_sampler_ = std::make_shared(); } - builder_schema_ = make_unique(); + builder_schema_ = std::make_unique(); RETURN_IF_NOT_OK( builder_schema_->AddColumn(ColDescriptor("image", DataType(DataType::DE_UINT8), TensorImpl::kCv, 1))); TensorShape scalar = TensorShape::CreateScalar(); @@ -89,7 +89,7 @@ Status MnistOp::TraversalSampleIds(const std::shared_ptr &sample_ids, st row_cnt_++; if (row_cnt_ % rows_per_buffer_ == 0) { RETURN_IF_NOT_OK(io_block_queues_[buf_cnt_++ % num_workers_]->Add( - make_unique(IOBlock(*keys, IOBlock::kDeIoBlockNone)))); + std::make_unique(IOBlock(*keys, IOBlock::kDeIoBlockNone)))); keys->clear(); } } @@ -115,21 +115,21 @@ Status MnistOp::operator()() { } if (keys.empty() == false) { RETURN_IF_NOT_OK(io_block_queues_[(buf_cnt_++) % num_workers_]->Add( - make_unique(IOBlock(keys, IOBlock::kDeIoBlockNone)))); + std::make_unique(IOBlock(keys, IOBlock::kDeIoBlockNone)))); } if (!BitTest(op_ctrl_flags_, kDeOpRepeated) || BitTest(op_ctrl_flags_, kDeOpLastRepeat)) { RETURN_IF_NOT_OK( - io_block_queues_[(buf_cnt_++) % num_workers_]->Add(make_unique(IOBlock::kDeIoBlockFlagEoe))); + io_block_queues_[(buf_cnt_++) % num_workers_]->Add(std::make_unique(IOBlock::kDeIoBlockFlagEoe))); RETURN_IF_NOT_OK( - io_block_queues_[(buf_cnt_++) % num_workers_]->Add(make_unique(IOBlock::kDeIoBlockFlagEof))); + io_block_queues_[(buf_cnt_++) % num_workers_]->Add(std::make_unique(IOBlock::kDeIoBlockFlagEof))); for (int32_t i = 0; i < num_workers_; ++i) { RETURN_IF_NOT_OK( - io_block_queues_[i]->Add(make_unique(std::vector(), IOBlock::kDeIoBlockNone))); + io_block_queues_[i]->Add(std::make_unique(std::vector(), IOBlock::kDeIoBlockNone))); } return Status::OK(); } else { RETURN_IF_NOT_OK( - io_block_queues_[(buf_cnt_++) % num_workers_]->Add(make_unique(IOBlock::kDeIoBlockFlagEoe))); + io_block_queues_[(buf_cnt_++) % num_workers_]->Add(std::make_unique(IOBlock::kDeIoBlockFlagEoe))); RETURN_IF_NOT_OK(wp_.Wait()); // Master thread goes to sleep after it has made all the IOBlocks wp_.Clear(); RETURN_IF_NOT_OK(sampler_->GetNextBuffer(&sampler_buffer)); @@ -145,15 +145,15 @@ Status MnistOp::WorkerEntry(int32_t worker_id) { RETURN_IF_NOT_OK(io_block_queues_[worker_id]->PopFront(&iOBlock)); while (iOBlock != nullptr) { if (iOBlock->eoe() == true) { - RETURN_IF_NOT_OK(out_connector_->Add(worker_id, make_unique(0, DataBuffer::kDeBFlagEOE))); + RETURN_IF_NOT_OK(out_connector_->Add(worker_id, std::make_unique(0, DataBuffer::kDeBFlagEOE))); buffer_id = worker_id; } else if (iOBlock->eof() == true) { - RETURN_IF_NOT_OK(out_connector_->Add(worker_id, make_unique(0, DataBuffer::kDeBFlagEOF))); + RETURN_IF_NOT_OK(out_connector_->Add(worker_id, std::make_unique(0, DataBuffer::kDeBFlagEOF))); } else { std::vector keys; RETURN_IF_NOT_OK(iOBlock->GetKeys(&keys)); if (keys.empty() == true) return Status::OK(); // empty key is a quit signal for workers - std::unique_ptr db = make_unique(buffer_id, DataBuffer::kDeBFlagNone); + std::unique_ptr db = std::make_unique(buffer_id, DataBuffer::kDeBFlagNone); RETURN_IF_NOT_OK(LoadBuffer(keys, &db)); RETURN_IF_NOT_OK(out_connector_->Add(worker_id, std::move(db))); buffer_id += num_workers_; @@ -178,7 +178,7 @@ Status MnistOp::LoadTensorRow(const MnistLabelPair &mnist_pair, TensorRow *trow) // Looping over LoadTensorRow to make 1 DataBuffer. 1 function call produces 1 buffer Status MnistOp::LoadBuffer(const std::vector &keys, std::unique_ptr *db) { - std::unique_ptr deq = make_unique(); + std::unique_ptr deq = std::make_unique(); TensorRow trow; for (const int64_t &key : keys) { RETURN_IF_NOT_OK(this->LoadTensorRow(image_label_pairs_[key], &trow)); @@ -309,8 +309,8 @@ Status MnistOp::ReadImageAndLabel(std::ifstream *image_reader, std::ifstream *la CHECK_FAIL_RETURN_UNEXPECTED((num_images == num_labels), "num_images != num_labels"); // The image size of the Mnist dataset is fixed at [28,28] int64_t size = kMnistImageRows * kMnistImageCols; - auto images_buf = mindspore::make_unique(size * num_images); - auto labels_buf = mindspore::make_unique(num_images); + auto images_buf = std::make_unique(size * num_images); + auto labels_buf = std::make_unique(num_images); if (images_buf == nullptr || labels_buf == nullptr) { std::string err_msg = "Fail to allocate memory for MNIST Buffer."; MS_LOG(ERROR) << err_msg.c_str(); diff --git a/mindspore/ccsrc/dataset/engine/datasetops/source/sampler/distributed_sampler.cc b/mindspore/ccsrc/dataset/engine/datasetops/source/sampler/distributed_sampler.cc index 51ad71e8cf..28a5705648 100644 --- a/mindspore/ccsrc/dataset/engine/datasetops/source/sampler/distributed_sampler.cc +++ b/mindspore/ccsrc/dataset/engine/datasetops/source/sampler/distributed_sampler.cc @@ -52,9 +52,9 @@ Status DistributedSampler::GetNextBuffer(std::unique_ptr *out_buffer if (cnt_ > samples_per_buffer_) { RETURN_STATUS_UNEXPECTED("Distributed Sampler Error"); } else if (cnt_ == samples_per_buffer_) { - (*out_buffer) = mindspore::make_unique(0, DataBuffer::kDeBFlagEOE); + (*out_buffer) = std::make_unique(0, DataBuffer::kDeBFlagEOE); } else { - (*out_buffer) = mindspore::make_unique(cnt_, DataBuffer::kDeBFlagNone); + (*out_buffer) = std::make_unique(cnt_, DataBuffer::kDeBFlagNone); std::shared_ptr sample_ids; RETURN_IF_NOT_OK(CreateSamplerTensor(&sample_ids, samples_per_buffer_)); int64_t *id_ptr = reinterpret_cast(sample_ids->StartAddr()); @@ -63,7 +63,7 @@ Status DistributedSampler::GetNextBuffer(std::unique_ptr *out_buffer *(id_ptr++) = shuffle_ ? shuffle_vec_[static_cast(next_id)] : next_id; } TensorRow row(1, sample_ids); - (*out_buffer)->set_tensor_table(make_unique(1, row)); + (*out_buffer)->set_tensor_table(std::make_unique(1, row)); } return Status::OK(); } diff --git a/mindspore/ccsrc/dataset/engine/datasetops/source/sampler/pk_sampler.cc b/mindspore/ccsrc/dataset/engine/datasetops/source/sampler/pk_sampler.cc index 04a6ad17a2..8c8c12fce2 100644 --- a/mindspore/ccsrc/dataset/engine/datasetops/source/sampler/pk_sampler.cc +++ b/mindspore/ccsrc/dataset/engine/datasetops/source/sampler/pk_sampler.cc @@ -53,9 +53,9 @@ Status PKSampler::GetNextBuffer(std::unique_ptr *out_buffer) { if (next_id_ > num_pk_samples_ || num_pk_samples_ == 0) { RETURN_STATUS_UNEXPECTED("Index out of bound in PKSampler"); } else if (next_id_ == num_pk_samples_) { - (*out_buffer) = mindspore::make_unique(0, DataBuffer::kDeBFlagEOE); + (*out_buffer) = std::make_unique(0, DataBuffer::kDeBFlagEOE); } else { - (*out_buffer) = mindspore::make_unique(next_id_, DataBuffer::kDeBFlagNone); + (*out_buffer) = std::make_unique(next_id_, DataBuffer::kDeBFlagNone); std::shared_ptr sample_ids; int64_t last_id = (samples_per_buffer_ + next_id_ > num_pk_samples_) ? num_pk_samples_ : samples_per_buffer_ + next_id_; @@ -68,7 +68,7 @@ Status PKSampler::GetNextBuffer(std::unique_ptr *out_buffer) { *(id_ptr++) = samples[rnd_ind]; } TensorRow row(1, sample_ids); - (*out_buffer)->set_tensor_table(make_unique(1, row)); + (*out_buffer)->set_tensor_table(std::make_unique(1, row)); } return Status::OK(); } diff --git a/mindspore/ccsrc/dataset/engine/datasetops/source/sampler/random_sampler.cc b/mindspore/ccsrc/dataset/engine/datasetops/source/sampler/random_sampler.cc index de4d89d950..216f322052 100644 --- a/mindspore/ccsrc/dataset/engine/datasetops/source/sampler/random_sampler.cc +++ b/mindspore/ccsrc/dataset/engine/datasetops/source/sampler/random_sampler.cc @@ -32,9 +32,9 @@ Status RandomSampler::GetNextBuffer(std::unique_ptr *out_buffer) { if (next_id_ > num_samples_) { RETURN_STATUS_UNEXPECTED("RandomSampler Internal Error"); } else if (next_id_ == num_samples_) { - (*out_buffer) = make_unique(0, DataBuffer::kDeBFlagEOE); + (*out_buffer) = std::make_unique(0, DataBuffer::kDeBFlagEOE); } else { - (*out_buffer) = make_unique(next_id_, DataBuffer::kDeBFlagNone); + (*out_buffer) = std::make_unique(next_id_, DataBuffer::kDeBFlagNone); std::shared_ptr sampleIds; int64_t last_id = samples_per_buffer_ + next_id_ > num_samples_ ? num_samples_ : samples_per_buffer_ + next_id_; RETURN_IF_NOT_OK(CreateSamplerTensor(&sampleIds, last_id - next_id_)); @@ -44,7 +44,7 @@ Status RandomSampler::GetNextBuffer(std::unique_ptr *out_buffer) { } next_id_ = last_id; TensorRow row(1, sampleIds); - (*out_buffer)->set_tensor_table(make_unique(1, row)); + (*out_buffer)->set_tensor_table(std::make_unique(1, row)); } return Status::OK(); } @@ -61,7 +61,7 @@ Status RandomSampler::Init(const RandomAccessOp *op) { } std::shuffle(shuffled_ids_.begin(), shuffled_ids_.end(), rnd_); } else { - dist = make_unique>(0, num_rows_ - 1); + dist = std::make_unique>(0, num_rows_ - 1); } rnd_.seed(seed_++); return Status::OK(); diff --git a/mindspore/ccsrc/dataset/engine/datasetops/source/sampler/sampler.cc b/mindspore/ccsrc/dataset/engine/datasetops/source/sampler/sampler.cc index 9818cd8a17..aa3838f8b5 100644 --- a/mindspore/ccsrc/dataset/engine/datasetops/source/sampler/sampler.cc +++ b/mindspore/ccsrc/dataset/engine/datasetops/source/sampler/sampler.cc @@ -35,7 +35,7 @@ Status Sampler::CreateSamplerTensor(std::shared_ptr *sample_ids, int64_t } if (col_desc_ == nullptr) { // a ColDescriptor for Tensor that holds SampleIds - col_desc_ = make_unique("sampleIds", DataType(DataType::DE_INT64), TensorImpl::kFlexible, 1); + col_desc_ = std::make_unique("sampleIds", DataType(DataType::DE_INT64), TensorImpl::kFlexible, 1); } TensorShape shape(std::vector(1, num_elements)); RETURN_IF_NOT_OK(Tensor::CreateTensor(sample_ids, col_desc_->tensorImpl(), shape, col_desc_->type())); diff --git a/mindspore/ccsrc/dataset/engine/datasetops/source/sampler/sampler.h b/mindspore/ccsrc/dataset/engine/datasetops/source/sampler/sampler.h index d9a20f9170..801565508b 100644 --- a/mindspore/ccsrc/dataset/engine/datasetops/source/sampler/sampler.h +++ b/mindspore/ccsrc/dataset/engine/datasetops/source/sampler/sampler.h @@ -27,7 +27,6 @@ #include "dataset/engine/data_buffer.h" #include "dataset/engine/data_schema.h" #include "dataset/engine/datasetops/dataset_op.h" -#include "dataset/util/make_unique.h" namespace mindspore { namespace dataset { diff --git a/mindspore/ccsrc/dataset/engine/datasetops/source/sampler/sequential_sampler.cc b/mindspore/ccsrc/dataset/engine/datasetops/source/sampler/sequential_sampler.cc index 71c3dd07c4..72131a6de1 100644 --- a/mindspore/ccsrc/dataset/engine/datasetops/source/sampler/sequential_sampler.cc +++ b/mindspore/ccsrc/dataset/engine/datasetops/source/sampler/sequential_sampler.cc @@ -25,9 +25,9 @@ Status SequentialSampler::GetNextBuffer(std::unique_ptr *out_buffer) if (next_id_ > num_samples_) { RETURN_STATUS_UNEXPECTED("Sequential Sampler Internal Error"); } else if (next_id_ == num_samples_) { - (*out_buffer) = make_unique(0, DataBuffer::kDeBFlagEOE); + (*out_buffer) = std::make_unique(0, DataBuffer::kDeBFlagEOE); } else { - (*out_buffer) = make_unique(next_id_, DataBuffer::kDeBFlagNone); + (*out_buffer) = std::make_unique(next_id_, DataBuffer::kDeBFlagNone); std::shared_ptr sampleIds; int64_t lastId = (samples_per_buffer_ + next_id_ > num_samples_) ? num_samples_ : samples_per_buffer_ + next_id_; RETURN_IF_NOT_OK(CreateSamplerTensor(&sampleIds, lastId - next_id_)); @@ -36,7 +36,7 @@ Status SequentialSampler::GetNextBuffer(std::unique_ptr *out_buffer) *(idPtr++) = next_id_++; } TensorRow row(1, sampleIds); - (*out_buffer)->set_tensor_table(make_unique(1, row)); + (*out_buffer)->set_tensor_table(std::make_unique(1, row)); } return Status::OK(); } diff --git a/mindspore/ccsrc/dataset/engine/datasetops/source/sampler/subset_random_sampler.cc b/mindspore/ccsrc/dataset/engine/datasetops/source/sampler/subset_random_sampler.cc index 4f727fcd04..16603939b3 100644 --- a/mindspore/ccsrc/dataset/engine/datasetops/source/sampler/subset_random_sampler.cc +++ b/mindspore/ccsrc/dataset/engine/datasetops/source/sampler/subset_random_sampler.cc @@ -64,9 +64,9 @@ Status SubsetRandomSampler::Reset() { Status SubsetRandomSampler::GetNextBuffer(std::unique_ptr *out_buffer) { // All samples have been drawn if (sample_id_ == indices_.size()) { - (*out_buffer) = make_unique(buffer_id_++, DataBuffer::kDeBFlagEOE); + (*out_buffer) = std::make_unique(buffer_id_++, DataBuffer::kDeBFlagEOE); } else { - (*out_buffer) = make_unique(buffer_id_++, DataBuffer::kDeBFlagNone); + (*out_buffer) = std::make_unique(buffer_id_++, DataBuffer::kDeBFlagNone); std::shared_ptr outputIds; int64_t last_id = sample_id_ + samples_per_buffer_; @@ -92,7 +92,7 @@ Status SubsetRandomSampler::GetNextBuffer(std::unique_ptr *out_buffe } // Create a TensorTable from that single tensor and push into DataBuffer - (*out_buffer)->set_tensor_table(make_unique(1, TensorRow(1, outputIds))); + (*out_buffer)->set_tensor_table(std::make_unique(1, TensorRow(1, outputIds))); } return Status::OK(); diff --git a/mindspore/ccsrc/dataset/engine/datasetops/source/sampler/weighted_random_sampler.cc b/mindspore/ccsrc/dataset/engine/datasetops/source/sampler/weighted_random_sampler.cc index f305474182..f2957e74be 100644 --- a/mindspore/ccsrc/dataset/engine/datasetops/source/sampler/weighted_random_sampler.cc +++ b/mindspore/ccsrc/dataset/engine/datasetops/source/sampler/weighted_random_sampler.cc @@ -46,10 +46,10 @@ Status WeightedRandomSampler::Init(const RandomAccessOp *op) { CHECK_FAIL_RETURN_UNEXPECTED(num_samples_ > 0 && samples_per_buffer_ > 0, "Fail to init WeightedRandomSampler"); if (!replacement_) { - exp_dist_ = mindspore::make_unique>(1); + exp_dist_ = std::make_unique>(1); InitOnePassSampling(); } else { - discrete_dist_ = mindspore::make_unique>(weights_.begin(), weights_.end()); + discrete_dist_ = std::make_unique>(weights_.begin(), weights_.end()); } return Status::OK(); @@ -96,9 +96,9 @@ Status WeightedRandomSampler::GetNextBuffer(std::unique_ptr *out_buf } if (sample_id_ == num_samples_) { - (*out_buffer) = make_unique(buffer_id_++, DataBuffer::kDeBFlagEOE); + (*out_buffer) = std::make_unique(buffer_id_++, DataBuffer::kDeBFlagEOE); } else { - (*out_buffer) = make_unique(buffer_id_++, DataBuffer::kDeBFlagNone); + (*out_buffer) = std::make_unique(buffer_id_++, DataBuffer::kDeBFlagNone); std::shared_ptr outputIds; int64_t last_id = sample_id_ + samples_per_buffer_; @@ -132,7 +132,7 @@ Status WeightedRandomSampler::GetNextBuffer(std::unique_ptr *out_buf } // Create a TensorTable from that single tensor and push into DataBuffer - (*out_buffer)->set_tensor_table(make_unique(1, TensorRow(1, outputIds))); + (*out_buffer)->set_tensor_table(std::make_unique(1, TensorRow(1, outputIds))); } return Status::OK(); diff --git a/mindspore/ccsrc/dataset/engine/datasetops/source/storage_client.cc b/mindspore/ccsrc/dataset/engine/datasetops/source/storage_client.cc index 95720a97be..862edcf63a 100644 --- a/mindspore/ccsrc/dataset/engine/datasetops/source/storage_client.cc +++ b/mindspore/ccsrc/dataset/engine/datasetops/source/storage_client.cc @@ -24,7 +24,6 @@ #include "dataset/engine/datasetops/source/storage_client.h" #include "dataset/engine/datasetops/source/storage_op.h" #include "dataset/engine/datasetops/source/tf_client.h" -#include "dataset/util/make_unique.h" #include "dataset/util/status.h" namespace mindspore { @@ -57,7 +56,7 @@ static Status CreateStorageClientSwitch( case DatasetType::kTf: { // Construct the derived class TFClient, stored as base class StorageClient store_op->set_rows_per_buffer(32); - *out_client = mindspore::make_unique(std::move(schema), store_op); + *out_client = std::make_unique(std::move(schema), store_op); break; } case DatasetType::kUnknown: @@ -83,7 +82,7 @@ Status StorageClient::CreateStorageClient( std::shared_ptr *out_client) { // Out: the created storage client // Make a new schema first. This only assigns the dataset type. It does not // create the columns yet. - auto new_schema = mindspore::make_unique(); + auto new_schema = std::make_unique(); RETURN_IF_NOT_OK(new_schema->LoadDatasetType(dataset_schema_path)); RETURN_IF_NOT_OK(CreateStorageClientSwitch(std::move(new_schema), store_op, out_client)); return Status::OK(); @@ -99,7 +98,7 @@ Status StorageClient::CreateStorageClient( std::shared_ptr *out_client) { // Out: the created storage client // The dataset type is passed in by the user. Create an empty schema with only // only the dataset type filled in and then create the client with it. - auto new_schema = mindspore::make_unique(); + auto new_schema = std::make_unique(); new_schema->set_dataset_type(in_type); RETURN_IF_NOT_OK(CreateStorageClientSwitch(std::move(new_schema), store_op, out_client)); return Status::OK(); @@ -147,7 +146,7 @@ Status StorageClient::AssignDatasetLayout(uint32_t num_rows, // In: Th // The current schema was just an empty one with only the dataset field populated. // Let's copy construct a new one that will be a copy of the input schema (releasing the old // one) and then set the number of rows that the user requested. - data_schema_ = mindspore::make_unique(schema); + data_schema_ = std::make_unique(schema); CHECK_FAIL_RETURN_UNEXPECTED(num_rows <= MAX_INTEGER_INT32, "numRows exceeds the boundary numRows>2147483647"); num_rows_in_dataset_ = num_rows; diff --git a/mindspore/ccsrc/dataset/engine/datasetops/source/storage_op.cc b/mindspore/ccsrc/dataset/engine/datasetops/source/storage_op.cc index 9da27eac04..2ca957ae6d 100644 --- a/mindspore/ccsrc/dataset/engine/datasetops/source/storage_op.cc +++ b/mindspore/ccsrc/dataset/engine/datasetops/source/storage_op.cc @@ -303,7 +303,7 @@ Status StorageOp::init() { // For simplicity, we'll make both of them 3 so they are the same size. int32_t action_queue_size = (buffers_needed / num_workers_) + 1; for (int32_t i = 0; i < num_workers_; ++i) { - auto new_queue = mindspore::make_unique>(action_queue_size); + auto new_queue = std::make_unique>(action_queue_size); action_queue_.push_back(std::move(new_queue)); } } @@ -483,10 +483,10 @@ Status StorageOp::operator()() { // Post the control message to tell the workers to stop waiting on action queue // because we are done! RETURN_IF_NOT_OK(this->PostEndOfData()); - std::unique_ptr eoeBuffer = mindspore::make_unique(0, DataBuffer::kDeBFlagEOE); + std::unique_ptr eoeBuffer = std::make_unique(0, DataBuffer::kDeBFlagEOE); RETURN_IF_NOT_OK(out_connector_->Add(0, std::move(eoeBuffer))); MS_LOG(INFO) << "StorageOp master: Flow end-of-data eof message."; - std::unique_ptr eofBuffer = mindspore::make_unique(0, DataBuffer::kDeBFlagEOF); + std::unique_ptr eofBuffer = std::make_unique(0, DataBuffer::kDeBFlagEOF); RETURN_IF_NOT_OK(out_connector_->Add(0, std::move(eofBuffer))); MS_LOG(INFO) << "StorageOp master: Main execution loop complete."; done = true; // while loop exit @@ -496,7 +496,7 @@ Status StorageOp::operator()() { // RepeatOp above us somewhere in the tree will re-init us with the data to fetch again // once it gets the end-of-epoch message. MS_LOG(INFO) << "StorageOp master: Flow end-of-epoch eoe message."; - std::unique_ptr eoe_buffer = mindspore::make_unique(0, DataBuffer::kDeBFlagEOE); + std::unique_ptr eoe_buffer = std::make_unique(0, DataBuffer::kDeBFlagEOE); RETURN_IF_NOT_OK(out_connector_->Add(0, std::move(eoe_buffer))); // reset our buffer count and go to loop again. diff --git a/mindspore/ccsrc/dataset/engine/datasetops/source/tf_buffer.cc b/mindspore/ccsrc/dataset/engine/datasetops/source/tf_buffer.cc index 766c2149c4..372dcd2c1c 100644 --- a/mindspore/ccsrc/dataset/engine/datasetops/source/tf_buffer.cc +++ b/mindspore/ccsrc/dataset/engine/datasetops/source/tf_buffer.cc @@ -27,7 +27,6 @@ #include "dataset/core/data_type.h" #include "dataset/engine/datasetops/source/storage_client.h" #include "dataset/engine/data_schema.h" -#include "dataset/util/make_unique.h" namespace mindspore { namespace dataset { @@ -72,7 +71,7 @@ Status TFBuffer::Load() { } // Construct the Tensor table for this buffer. - tensor_table_ = mindspore::make_unique(); + tensor_table_ = std::make_unique(); // At each position in the tensor table, instantiate the shared pointer to it's Tensor. uint32_t row = 0; @@ -272,7 +271,7 @@ Status TFBuffer::LoadFloatList(const ColDescriptor ¤t_col, const dataengin // Identify how many values we have and then create a local array of these // to deserialize into *num_elements = float_list.value_size(); - *float_array = mindspore::make_unique(*num_elements); + *float_array = std::make_unique(*num_elements); for (int i = 0; i < float_list.value_size(); i++) { (*float_array)[i] = float_list.value(i); } @@ -294,7 +293,7 @@ Status TFBuffer::LoadIntList(const ColDescriptor ¤t_col, const dataengine: // Identify how many values we have and then create a local array of these // to deserialize into *num_elements = int64_list.value_size(); - *int_array = mindspore::make_unique(*num_elements); + *int_array = std::make_unique(*num_elements); for (int i = 0; i < int64_list.value_size(); i++) { (*int_array)[i] = int64_list.value(i); } diff --git a/mindspore/ccsrc/dataset/engine/datasetops/source/tf_reader_op.cc b/mindspore/ccsrc/dataset/engine/datasetops/source/tf_reader_op.cc index c872c02015..0764d7e0ad 100644 --- a/mindspore/ccsrc/dataset/engine/datasetops/source/tf_reader_op.cc +++ b/mindspore/ccsrc/dataset/engine/datasetops/source/tf_reader_op.cc @@ -36,7 +36,6 @@ #include "dataset/engine/db_connector.h" #include "dataset/engine/execution_tree.h" #include "dataset/engine/jagged_connector.h" -#include "dataset/util/make_unique.h" #include "dataset/util/path.h" #include "dataset/util/queue.h" #include "dataset/util/random.h" @@ -54,7 +53,7 @@ TFReaderOp::Builder::Builder() builder_op_connector_size_ = config_manager->op_connector_size(); builder_rows_per_buffer_ = config_manager->rows_per_buffer(); builder_shuffle_files_ = false; - builder_data_schema_ = make_unique(); + builder_data_schema_ = std::make_unique(); } Status TFReaderOp::Builder::ValidateInputs() const { @@ -103,7 +102,7 @@ TFReaderOp::TFReaderOp(int32_t num_workers, int32_t worker_connector_size, int64 finished_reading_dataset_(false), shuffle_files_(shuffle_files), data_schema_(std::move(data_schema)), - filename_index_(make_unique()), + filename_index_(std::make_unique()), load_io_block_queue_(true), load_jagged_connector_(true), num_rows_(0), @@ -129,7 +128,7 @@ Status TFReaderOp::Init() { // parallel op base. RETURN_IF_NOT_OK(ParallelOp::CreateWorkerConnector(worker_connector_size_)); - jagged_buffer_connector_ = mindspore::make_unique(num_workers_, 1, worker_connector_size_); + jagged_buffer_connector_ = std::make_unique(num_workers_, 1, worker_connector_size_); // temporary: make size large enough to hold all files + EOE to avoid hangs int32_t safe_queue_size = static_cast(std::ceil(dataset_files_list_.size() / num_workers_)) + 1; @@ -229,7 +228,7 @@ Status TFReaderOp::operator()() { } // all workers finished reading for this epoch, and we have read all the data from all workers - std::unique_ptr eoe_buffer = mindspore::make_unique(0, DataBuffer::kDeBFlagEOE); + std::unique_ptr eoe_buffer = std::make_unique(0, DataBuffer::kDeBFlagEOE); RETURN_IF_NOT_OK(out_connector_->Add(0, std::move(eoe_buffer))); if (!BitTest(op_ctrl_flags_, kDeOpRepeated) || BitTest(op_ctrl_flags_, kDeOpLastRepeat)) { @@ -241,7 +240,7 @@ Status TFReaderOp::operator()() { } } - std::unique_ptr eof_buffer = mindspore::make_unique(0, DataBuffer::kDeBFlagEOF); + std::unique_ptr eof_buffer = std::make_unique(0, DataBuffer::kDeBFlagEOF); RETURN_IF_NOT_OK(out_connector_->Add(0, std::move(eof_buffer))); RETURN_IF_NOT_OK(PostEndOfData()); @@ -274,7 +273,7 @@ Status TFReaderOp::WorkerEntry(int32_t worker_id) { MS_LOG(INFO) << "TFReader operator worker " << worker_id << " loaded file " << filename << "."; } } else { - std::unique_ptr eoe_buffer = mindspore::make_unique(1, DataBuffer::kDeBFlagEOE); + std::unique_ptr eoe_buffer = std::make_unique(1, DataBuffer::kDeBFlagEOE); RETURN_IF_NOT_OK(jagged_buffer_connector_->Add(worker_id, std::move(eoe_buffer))); } @@ -288,7 +287,7 @@ Status TFReaderOp::WorkerEntry(int32_t worker_id) { // When the worker pops this control indicator, it will shut itself down gracefully. Status TFReaderOp::PostEndOfData() { for (int i = 0; i < num_workers_; ++i) { - std::unique_ptr eof = mindspore::make_unique(IOBlock::kDeIoBlockFlagEof); + std::unique_ptr eof = std::make_unique(IOBlock::kDeIoBlockFlagEof); RETURN_IF_NOT_OK(PushIoBlockQueue(i, std::move(eof))); } @@ -299,7 +298,7 @@ Status TFReaderOp::PostEndOfData() { // pops this control indicator, it will wait until the next epoch starts and then resume execution. Status TFReaderOp::PostEndOfEpoch(int32_t queue_index) { for (int i = 0; i < num_workers_; ++i) { - std::unique_ptr eoe = mindspore::make_unique(IOBlock::kDeIoBlockFlagEoe); + std::unique_ptr eoe = std::make_unique(IOBlock::kDeIoBlockFlagEoe); RETURN_IF_NOT_OK(PushIoBlockQueue((queue_index + i) % num_workers_, std::move(eoe))); } @@ -358,7 +357,7 @@ Status TFReaderOp::FillIOBlockShuffle(const std::vector &i_keys) { } if (!equal_rows_per_shard_) { if (key_index++ % num_devices_ == device_id_) { - auto ioBlock = make_unique(*it, kInvalidOffset, kInvalidOffset, IOBlock::kDeIoBlockNone); + auto ioBlock = std::make_unique(*it, kInvalidOffset, kInvalidOffset, IOBlock::kDeIoBlockNone); RETURN_IF_NOT_OK(PushIoBlockQueue(queue_index, std::move(ioBlock))); queue_index = (queue_index + 1) % num_workers_; } @@ -367,7 +366,7 @@ Status TFReaderOp::FillIOBlockShuffle(const std::vector &i_keys) { auto file_it = filename_index_->Search(*it); std::string file_name = file_it.value(); if (NeedPushFileToblockQueue(file_name, &start_offset, &end_offset, pre_count)) { - auto ioBlock = make_unique(*it, start_offset, end_offset, IOBlock::kDeIoBlockNone); + auto ioBlock = std::make_unique(*it, start_offset, end_offset, IOBlock::kDeIoBlockNone); RETURN_IF_NOT_OK(PushIoBlockQueue(queue_index, std::move(ioBlock))); MS_LOG(DEBUG) << "File name " << *it << " start offset " << start_offset << " end_offset " << end_offset; queue_index = (queue_index + 1) % num_workers_; @@ -404,14 +403,15 @@ Status TFReaderOp::FillIOBlockNoShuffle() { } if (!equal_rows_per_shard_) { if (key_index++ % num_devices_ == device_id_) { - auto ioBlock = make_unique(it.key(), kInvalidOffset, kInvalidOffset, IOBlock::kDeIoBlockNone); + auto ioBlock = + std::make_unique(it.key(), kInvalidOffset, kInvalidOffset, IOBlock::kDeIoBlockNone); RETURN_IF_NOT_OK(PushIoBlockQueue(queue_index, std::move(ioBlock))); queue_index = (queue_index + 1) % num_workers_; } } else { std::string file_name = it.value(); if (NeedPushFileToblockQueue(file_name, &start_offset, &end_offset, pre_count)) { - auto ioBlock = make_unique(it.key(), start_offset, end_offset, IOBlock::kDeIoBlockNone); + auto ioBlock = std::make_unique(it.key(), start_offset, end_offset, IOBlock::kDeIoBlockNone); RETURN_IF_NOT_OK(PushIoBlockQueue(queue_index, std::move(ioBlock))); queue_index = (queue_index + 1) % num_workers_; } @@ -490,14 +490,13 @@ Status TFReaderOp::LoadFile(const std::string &filename, const int64_t start_off int64_t rows_read = 0; int64_t rows_total = 0; - std::unique_ptr current_buffer = - mindspore::make_unique(0, DataBuffer::BufferFlags::kDeBFlagNone); + std::unique_ptr current_buffer = std::make_unique(0, DataBuffer::BufferFlags::kDeBFlagNone); std::unordered_map column_name_map; for (int32_t i = 0; i < data_schema_->NumColumns(); ++i) { column_name_map[data_schema_->column(i).name()] = i; } current_buffer->set_column_name_map(column_name_map); - std::unique_ptr new_tensor_table = make_unique(); + std::unique_ptr new_tensor_table = std::make_unique(); while (reader.peek() != EOF) { if (!load_jagged_connector_) { @@ -532,9 +531,9 @@ Status TFReaderOp::LoadFile(const std::string &filename, const int64_t start_off current_buffer->set_tensor_table(std::move(new_tensor_table)); RETURN_IF_NOT_OK(jagged_buffer_connector_->Add(worker_id, std::move(current_buffer))); - current_buffer = make_unique(0, DataBuffer::BufferFlags::kDeBFlagNone); + current_buffer = std::make_unique(0, DataBuffer::BufferFlags::kDeBFlagNone); current_buffer->set_column_name_map(column_name_map); - new_tensor_table = make_unique(); + new_tensor_table = std::make_unique(); rows_read = 0; } } @@ -742,7 +741,7 @@ Status TFReaderOp::LoadFloatList(const ColDescriptor ¤t_col, const dataeng // Identify how many values we have and then create a local array of these // to deserialize into *num_elements = float_list.value_size(); - *float_array = mindspore::make_unique(*num_elements); + *float_array = std::make_unique(*num_elements); for (int i = 0; i < float_list.value_size(); ++i) { (*float_array)[i] = float_list.value(i); } diff --git a/mindspore/ccsrc/dataset/engine/datasetops/source/voc_op.cc b/mindspore/ccsrc/dataset/engine/datasetops/source/voc_op.cc index d3785f4660..71b4c47cf5 100644 --- a/mindspore/ccsrc/dataset/engine/datasetops/source/voc_op.cc +++ b/mindspore/ccsrc/dataset/engine/datasetops/source/voc_op.cc @@ -38,7 +38,7 @@ Status VOCOp::Builder::Build(std::shared_ptr *ptr) { if (builder_sampler_ == nullptr) { builder_sampler_ = std::make_shared(); } - builder_schema_ = make_unique(); + builder_schema_ = std::make_unique(); RETURN_IF_NOT_OK( builder_schema_->AddColumn(ColDescriptor("image", DataType(DataType::DE_UINT8), TensorImpl::kFlexible, 1))); RETURN_IF_NOT_OK( @@ -85,7 +85,7 @@ Status VOCOp::TraverseSampleIds(const std::shared_ptr &sample_ids, std:: row_cnt_++; if (row_cnt_ % rows_per_buffer_ == 0) { RETURN_IF_NOT_OK(io_block_queues_[buf_cnt_++ % num_workers_]->Add( - make_unique(IOBlock(*keys, IOBlock::kDeIoBlockNone)))); + std::make_unique(IOBlock(*keys, IOBlock::kDeIoBlockNone)))); keys->clear(); } } @@ -110,21 +110,21 @@ Status VOCOp::operator()() { } if (keys.empty() == false) { RETURN_IF_NOT_OK(io_block_queues_[(buf_cnt_++) % num_workers_]->Add( - make_unique(IOBlock(keys, IOBlock::kDeIoBlockNone)))); + std::make_unique(IOBlock(keys, IOBlock::kDeIoBlockNone)))); } if (!BitTest(op_ctrl_flags_, kDeOpRepeated) || BitTest(op_ctrl_flags_, kDeOpLastRepeat)) { - std::unique_ptr eoe_block = make_unique(IOBlock::kDeIoBlockFlagEoe); - std::unique_ptr eof_block = make_unique(IOBlock::kDeIoBlockFlagEof); + std::unique_ptr eoe_block = std::make_unique(IOBlock::kDeIoBlockFlagEoe); + std::unique_ptr eof_block = std::make_unique(IOBlock::kDeIoBlockFlagEof); RETURN_IF_NOT_OK(io_block_queues_[(buf_cnt_++) % num_workers_]->Add(std::move(eoe_block))); RETURN_IF_NOT_OK(io_block_queues_[(buf_cnt_++) % num_workers_]->Add(std::move(eof_block))); for (int32_t i = 0; i < num_workers_; i++) { RETURN_IF_NOT_OK( - io_block_queues_[i]->Add(make_unique(std::vector(), IOBlock::kDeIoBlockNone))); + io_block_queues_[i]->Add(std::make_unique(std::vector(), IOBlock::kDeIoBlockNone))); } return Status::OK(); } else { RETURN_IF_NOT_OK( - io_block_queues_[(buf_cnt_++) % num_workers_]->Add(make_unique(IOBlock::kDeIoBlockFlagEoe))); + io_block_queues_[(buf_cnt_++) % num_workers_]->Add(std::make_unique(IOBlock::kDeIoBlockFlagEoe))); RETURN_IF_NOT_OK(wp_.Wait()); wp_.Clear(); RETURN_IF_NOT_OK(sampler_->GetNextBuffer(&sampler_buffer)); @@ -164,7 +164,7 @@ Status VOCOp::LoadTensorRow(const std::string &image_id, TensorRow *trow) { } Status VOCOp::LoadBuffer(const std::vector &keys, std::unique_ptr *db) { - std::unique_ptr deq = make_unique(); + std::unique_ptr deq = std::make_unique(); TensorRow trow; for (const uint64_t &key : keys) { RETURN_IF_NOT_OK(this->LoadTensorRow(image_ids_[key], &trow)); @@ -182,15 +182,15 @@ Status VOCOp::WorkerEntry(int32_t worker_id) { RETURN_IF_NOT_OK(io_block_queues_[worker_id]->PopFront(&io_block)); while (io_block != nullptr) { if (io_block->eoe() == true) { - RETURN_IF_NOT_OK(out_connector_->Add(worker_id, make_unique(0, DataBuffer::kDeBFlagEOE))); + RETURN_IF_NOT_OK(out_connector_->Add(worker_id, std::make_unique(0, DataBuffer::kDeBFlagEOE))); buffer_id = worker_id; } else if (io_block->eof() == true) { - RETURN_IF_NOT_OK(out_connector_->Add(worker_id, (make_unique(0, DataBuffer::kDeBFlagEOF)))); + RETURN_IF_NOT_OK(out_connector_->Add(worker_id, (std::make_unique(0, DataBuffer::kDeBFlagEOF)))); } else { std::vector keys; RETURN_IF_NOT_OK(io_block->GetKeys(&keys)); if (keys.empty() == true) return Status::OK(); - std::unique_ptr db = make_unique(buffer_id, DataBuffer::kDeBFlagNone); + std::unique_ptr db = std::make_unique(buffer_id, DataBuffer::kDeBFlagNone); RETURN_IF_NOT_OK(LoadBuffer(keys, &db)); RETURN_IF_NOT_OK(out_connector_->Add(worker_id, std::move(db))); buffer_id += num_workers_; diff --git a/mindspore/ccsrc/dataset/engine/datasetops/zip_op.cc b/mindspore/ccsrc/dataset/engine/datasetops/zip_op.cc index 716c853488..ec771740c1 100644 --- a/mindspore/ccsrc/dataset/engine/datasetops/zip_op.cc +++ b/mindspore/ccsrc/dataset/engine/datasetops/zip_op.cc @@ -65,13 +65,13 @@ Status ZipOp::operator()() { // initialize the iterators for (int32_t i = 0; i < children_num_; ++i) { // magic number 0 since Zip is not a parallel Op - child_iterators_.push_back(mindspore::make_unique(this, 0, i)); + child_iterators_.push_back(std::make_unique(this, 0, i)); } // Loop until eof is true while (!eof_) { // Create tensor table and prepare it by fetching and packing the first zipped row into it. - std::unique_ptr curr_table = mindspore::make_unique(); + std::unique_ptr curr_table = std::make_unique(); RETURN_IF_NOT_OK(prepare(curr_table.get())); // If an eof got picked up during the above prepare, then we're done @@ -81,7 +81,7 @@ Status ZipOp::operator()() { while (!draining_) { // 1. If a previous loop iteration sent the current table out, then create a new one. if (curr_table == nullptr) { - curr_table = mindspore::make_unique(); + curr_table = std::make_unique(); } // 2 fill the table. Note: draining mode might get turned on if any of the child inputs were done @@ -89,8 +89,7 @@ Status ZipOp::operator()() { // 3 create and update buffer and send it to the out connector if (!curr_table->empty()) { - std::unique_ptr curr_buffer = - mindspore::make_unique(buffer_id_, DataBuffer::kDeBFlagNone); + std::unique_ptr curr_buffer = std::make_unique(buffer_id_, DataBuffer::kDeBFlagNone); curr_buffer->set_tensor_table(std::move(curr_table)); curr_buffer->set_column_name_map(col_name_id_map_); MS_LOG(DEBUG) << "Zip operator finished one buffer, pushing, rows " << curr_buffer->NumRows() << ", cols " @@ -105,15 +104,14 @@ Status ZipOp::operator()() { MS_LOG(DEBUG) << "Zip operator is now draining child inputs."; RETURN_IF_NOT_OK(drainPipeline()); // Now that we have drained child inputs, send the eoe up. - RETURN_IF_NOT_OK( - out_connector_->Add(0, std::move(mindspore::make_unique(0, DataBuffer::kDeBFlagEOE)))); + RETURN_IF_NOT_OK(out_connector_->Add(0, std::move(std::make_unique(0, DataBuffer::kDeBFlagEOE)))); } } // 5 handle eof // propagate eof here. MS_LOG(INFO) << "Zip operator got EOF, propagating."; - RETURN_IF_NOT_OK(out_connector_->Add(0, std::move(mindspore::make_unique(0, DataBuffer::kDeBFlagEOF)))); + RETURN_IF_NOT_OK(out_connector_->Add(0, std::move(std::make_unique(0, DataBuffer::kDeBFlagEOF)))); return Status::OK(); } diff --git a/mindspore/ccsrc/dataset/engine/db_connector.h b/mindspore/ccsrc/dataset/engine/db_connector.h index 243e77e6ac..7ea9837c44 100644 --- a/mindspore/ccsrc/dataset/engine/db_connector.h +++ b/mindspore/ccsrc/dataset/engine/db_connector.h @@ -65,7 +65,7 @@ class DbConnector : public Connector> { RETURN_IF_NOT_OK(cv_.Wait(&lk, [this, worker_id]() { return expect_consumer_ == worker_id; })); // Once an EOF message is encountered this flag will be set and we can return early. if (end_of_file_) { - *result = mindspore::make_unique(0, DataBuffer::kDeBFlagEOF); + *result = std::make_unique(0, DataBuffer::kDeBFlagEOF); } else { RETURN_IF_NOT_OK(queues_[pop_from_]->PopFront(result)); if (*result == nullptr) { diff --git a/mindspore/ccsrc/dataset/engine/execution_tree.cc b/mindspore/ccsrc/dataset/engine/execution_tree.cc index 3dbeaa5ed1..20fcb836c5 100644 --- a/mindspore/ccsrc/dataset/engine/execution_tree.cc +++ b/mindspore/ccsrc/dataset/engine/execution_tree.cc @@ -24,7 +24,7 @@ namespace mindspore { namespace dataset { // Constructor ExecutionTree::ExecutionTree() : id_count_(0) { - tg_ = mindspore::make_unique(); + tg_ = std::make_unique(); tree_state_ = kDeTStateInit; prepare_flags_ = kDePrepNone; } diff --git a/mindspore/ccsrc/dataset/kernels/image/image_utils.cc b/mindspore/ccsrc/dataset/kernels/image/image_utils.cc index 0412f07636..8735cf7a05 100644 --- a/mindspore/ccsrc/dataset/kernels/image/image_utils.cc +++ b/mindspore/ccsrc/dataset/kernels/image/image_utils.cc @@ -24,7 +24,6 @@ #include "dataset/core/cv_tensor.h" #include "dataset/core/tensor.h" #include "dataset/core/tensor_shape.h" -#include "dataset/util/make_unique.h" #include "dataset/util/random.h" #define MAX_INT_PRECISION 16777216 // float int precision is 16777216 @@ -376,7 +375,7 @@ Status HwcToChw(std::shared_ptr input, std::shared_ptr *output) int width = input_cv->shape()[1]; int num_channels = input_cv->shape()[2]; - auto output_cv = mindspore::make_unique(TensorShape{num_channels, height, width}, input_cv->type()); + auto output_cv = std::make_unique(TensorShape{num_channels, height, width}, input_cv->type()); for (int i = 0; i < num_channels; ++i) { cv::Mat mat; RETURN_IF_NOT_OK(output_cv->Mat({i}, &mat)); diff --git a/mindspore/ccsrc/dataset/kernels/py_func_op.cc b/mindspore/ccsrc/dataset/kernels/py_func_op.cc index 69bd3443c4..c9e5d5b169 100644 --- a/mindspore/ccsrc/dataset/kernels/py_func_op.cc +++ b/mindspore/ccsrc/dataset/kernels/py_func_op.cc @@ -20,7 +20,6 @@ #include "dataset/core/tensor.h" #include "dataset/kernels/tensor_op.h" -#include "dataset/util/make_unique.h" #include "dataset/util/status.h" namespace mindspore { diff --git a/mindspore/ccsrc/dataset/util/arena.cc b/mindspore/ccsrc/dataset/util/arena.cc index 856f7fef24..68673529ff 100644 --- a/mindspore/ccsrc/dataset/util/arena.cc +++ b/mindspore/ccsrc/dataset/util/arena.cc @@ -16,7 +16,6 @@ #include "dataset/util/arena.h" #include #include -#include "dataset/util/make_unique.h" #include "dataset/util/system_pool.h" #include "dataset/util/de_error.h" #include "./securec.h" diff --git a/mindspore/ccsrc/dataset/util/circular_pool.cc b/mindspore/ccsrc/dataset/util/circular_pool.cc index f6e43f35bf..92b169c94a 100644 --- a/mindspore/ccsrc/dataset/util/circular_pool.cc +++ b/mindspore/ccsrc/dataset/util/circular_pool.cc @@ -18,10 +18,8 @@ #include #include #include - #include "./securec.h" - -#include "dataset/util/make_unique.h" +#include "dataset/util/de_error.h" #include "dataset/util/system_pool.h" namespace mindspore { diff --git a/mindspore/ccsrc/dataset/util/de_error.h b/mindspore/ccsrc/dataset/util/de_error.h index 07d7c125f7..d4988c58db 100644 --- a/mindspore/ccsrc/dataset/util/de_error.h +++ b/mindspore/ccsrc/dataset/util/de_error.h @@ -16,6 +16,13 @@ #ifndef DATASET_UTIL_DE_ERROR_H_ #define DATASET_UTIL_DE_ERROR_H_ +#ifdef DEBUG +#include +#define DS_ASSERT(f) assert(f) +#else +#define DS_ASSERT(f) ((void)0) +#endif + #include #include "utils/error_code.h" diff --git a/mindspore/ccsrc/dataset/util/list.h b/mindspore/ccsrc/dataset/util/list.h index f01201e34d..5a08f4514e 100644 --- a/mindspore/ccsrc/dataset/util/list.h +++ b/mindspore/ccsrc/dataset/util/list.h @@ -18,8 +18,7 @@ #include #include - -#include "dataset/util/make_unique.h" +#include "dataset/util/de_error.h" namespace mindspore { namespace dataset { diff --git a/mindspore/ccsrc/dataset/util/lock.cc b/mindspore/ccsrc/dataset/util/lock.cc index 7e92a1e53f..13a43e3e84 100644 --- a/mindspore/ccsrc/dataset/util/lock.cc +++ b/mindspore/ccsrc/dataset/util/lock.cc @@ -14,6 +14,7 @@ * limitations under the License. */ #include "dataset/util/lock.h" +#include "dataset/util/de_error.h" namespace mindspore { namespace dataset { diff --git a/mindspore/ccsrc/dataset/util/lock.h b/mindspore/ccsrc/dataset/util/lock.h index 8fef6a143a..9492d34bdf 100644 --- a/mindspore/ccsrc/dataset/util/lock.h +++ b/mindspore/ccsrc/dataset/util/lock.h @@ -19,7 +19,6 @@ #include #include #include -#include "dataset/util/make_unique.h" namespace mindspore { namespace dataset { diff --git a/mindspore/ccsrc/dataset/util/make_unique.h b/mindspore/ccsrc/dataset/util/make_unique.h deleted file mode 100644 index 2fe0bf4550..0000000000 --- a/mindspore/ccsrc/dataset/util/make_unique.h +++ /dev/null @@ -1,37 +0,0 @@ -/** - * Copyright 2019 Huawei Technologies Co., Ltd - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -#ifndef DATASET_UTIL_MAKE_UNIQUE_H_ -#define DATASET_UTIL_MAKE_UNIQUE_H_ - -#ifdef DEBUG -#include -#define DS_ASSERT(f) assert(f) -#else -#define DS_ASSERT(f) ((void)0) -#endif - -#include -#include -#include -#include "dataset/util/de_error.h" -#include "utils/log_adapter.h" - -namespace mindspore { -using std::make_unique; -} // namespace mindspore - -#endif // DATASET_UTIL_MAKE_UNIQUE_H_ diff --git a/mindspore/ccsrc/dataset/util/queue.h b/mindspore/ccsrc/dataset/util/queue.h index 4048deb86b..f0b087cf6d 100644 --- a/mindspore/ccsrc/dataset/util/queue.h +++ b/mindspore/ccsrc/dataset/util/queue.h @@ -212,7 +212,7 @@ class QueueList { void Init(int num_queues, int capacity) { queue_list_.reserve(num_queues); for (int i = 0; i < num_queues; i++) { - queue_list_.emplace_back(mindspore::make_unique>(capacity)); + queue_list_.emplace_back(std::make_unique>(capacity)); } } diff --git a/mindspore/ccsrc/dataset/util/task.h b/mindspore/ccsrc/dataset/util/task.h index aaf2f80a3d..d6149caec8 100644 --- a/mindspore/ccsrc/dataset/util/task.h +++ b/mindspore/ccsrc/dataset/util/task.h @@ -27,7 +27,6 @@ #include #include #include "dataset/util/de_error.h" -#include "dataset/util/make_unique.h" #include "dataset/util/intrp_resource.h" #include "dataset/util/list.h" #include "dataset/util/memory_pool.h" diff --git a/mindspore/ccsrc/device/gpu/blocking_queue.cc b/mindspore/ccsrc/device/gpu/blocking_queue.cc index 7417115ae9..c36b1cdbf5 100644 --- a/mindspore/ccsrc/device/gpu/blocking_queue.cc +++ b/mindspore/ccsrc/device/gpu/blocking_queue.cc @@ -17,7 +17,6 @@ #include "device/gpu/blocking_queue.h" #include #include "device/gpu/gpu_common.h" -#include "dataset/util/make_unique.h" #include "common/utils.h" namespace mindspore { @@ -32,7 +31,7 @@ GpuQueue::GpuQueue(void *addr, size_t feature_size, size_t label_size, size_t ca stream_(0), node_info_(nullptr) { CHECK_CUDA_RET_WITH_ERROR(cudaStreamCreate(&stream_), "Cuda Create Stream Failed"); - node_info_ = mindspore::make_unique(capacity); + node_info_ = std::make_unique(capacity); } GpuQueue::~GpuQueue() { buffer_ = nullptr; } diff --git a/mindspore/ccsrc/kernel/gpu/math/bias_add_gpu_kernel.h b/mindspore/ccsrc/kernel/gpu/math/bias_add_gpu_kernel.h index 265180afe6..90609c3be5 100644 --- a/mindspore/ccsrc/kernel/gpu/math/bias_add_gpu_kernel.h +++ b/mindspore/ccsrc/kernel/gpu/math/bias_add_gpu_kernel.h @@ -23,7 +23,6 @@ #include #include "kernel/gpu/gpu_kernel.h" #include "kernel/gpu/gpu_kernel_factory.h" -#include "dataset/util/make_unique.h" #include "kernel/gpu/kernel_constants.h" namespace mindspore { @@ -74,8 +73,8 @@ class BiasAddGpuKernel : public GpuKernel { // Expand to 4 dims for cudnnSetTensorNdDescriptorEx. auto cudnn_dims = std::max(num_dims, 4UL); - std::unique_ptr x_dims = mindspore::make_unique(cudnn_dims); - std::unique_ptr b_dims = mindspore::make_unique(cudnn_dims); + std::unique_ptr x_dims = std::make_unique(cudnn_dims); + std::unique_ptr b_dims = std::make_unique(cudnn_dims); for (size_t i = 0; i < cudnn_dims; i++) { x_dims[i] = (i < num_dims) ? SizeToInt(x_shape[i]) : 1; b_dims[i] = (i == pos) ? SizeToInt(x_shape[i]) : 1; diff --git a/mindspore/ccsrc/kernel/gpu/nn/bias_add_grad_gpu_kenel.h b/mindspore/ccsrc/kernel/gpu/nn/bias_add_grad_gpu_kenel.h index b0e8102ee3..fd73f378d8 100644 --- a/mindspore/ccsrc/kernel/gpu/nn/bias_add_grad_gpu_kenel.h +++ b/mindspore/ccsrc/kernel/gpu/nn/bias_add_grad_gpu_kenel.h @@ -26,7 +26,6 @@ #include "kernel/gpu/gpu_kernel.h" #include "kernel/gpu/gpu_kernel_factory.h" #include "kernel/gpu/kernel_constants.h" -#include "dataset/util/make_unique.h" namespace mindspore { namespace kernel { @@ -84,8 +83,8 @@ class BiasAddGradGpuKernel : public GpuKernel { // Expand to 4 dims for cudnnSetTensorNdDescriptorEx. auto cudnn_dims = std::max(num_dims, 4UL); - std::unique_ptr dy_dims = mindspore::make_unique(cudnn_dims); - std::unique_ptr db_dims = mindspore::make_unique(cudnn_dims); + std::unique_ptr dy_dims = std::make_unique(cudnn_dims); + std::unique_ptr db_dims = std::make_unique(cudnn_dims); for (size_t i = 0; i < cudnn_dims; i++) { dy_dims[i] = (i < num_dims) ? SizeToInt(dy_shape[i]) : 1; db_dims[i] = (i == pos) ? SizeToInt(dy_shape[i]) : 1; diff --git a/mindspore/ccsrc/kernel/gpu/nn/lstm_gpu_kernel.h b/mindspore/ccsrc/kernel/gpu/nn/lstm_gpu_kernel.h index 51a2da8574..c3e839b9c5 100644 --- a/mindspore/ccsrc/kernel/gpu/nn/lstm_gpu_kernel.h +++ b/mindspore/ccsrc/kernel/gpu/nn/lstm_gpu_kernel.h @@ -22,7 +22,6 @@ #include #include "kernel/gpu/gpu_kernel.h" #include "kernel/gpu/gpu_kernel_factory.h" -#include "dataset/util/make_unique.h" #include "kernel/gpu/kernel_constants.h" namespace mindspore { @@ -144,8 +143,8 @@ class LstmGpuKernel : public GpuKernel { int x_dims[3]{batch_size_, input_size_, 1}; int y_dims[3]{batch_size_, hidden_size_ * (bidirectional_ ? 2 : 1), 1}; - x_desc_ = mindspore::make_unique(seq_len_); - y_desc_ = mindspore::make_unique(seq_len_); + x_desc_ = std::make_unique(seq_len_); + y_desc_ = std::make_unique(seq_len_); for (size_t i = 0; i < IntToSize(seq_len_); ++i) { CHECK_CUDNN_RET_WITH_EXCEPT(cudnnCreateTensorDescriptor(&x_desc_[i]), "create x_desc failed"); diff --git a/mindspore/ccsrc/kernel/gpu/nn/lstm_grad_data_gpu_kernel.h b/mindspore/ccsrc/kernel/gpu/nn/lstm_grad_data_gpu_kernel.h index a60ab78f7d..b12fa3bea5 100644 --- a/mindspore/ccsrc/kernel/gpu/nn/lstm_grad_data_gpu_kernel.h +++ b/mindspore/ccsrc/kernel/gpu/nn/lstm_grad_data_gpu_kernel.h @@ -23,7 +23,6 @@ #include "kernel/gpu/gpu_kernel.h" #include "kernel/gpu/gpu_kernel_factory.h" #include "kernel/gpu/kernel_constants.h" -#include "dataset/util/make_unique.h" namespace mindspore { namespace kernel { @@ -212,9 +211,9 @@ class LstmGradDataGpuKernel : public GpuKernel { int x_dims[3]{batch_size_, input_size_, 1}; int y_dims[3]{batch_size_, hidden_size_ * (bidirectional_ ? 2 : 1), 1}; - dx_desc_ = mindspore::make_unique(seq_len_); - y_desc_ = mindspore::make_unique(seq_len_); - dy_desc_ = mindspore::make_unique(seq_len_); + dx_desc_ = std::make_unique(seq_len_); + y_desc_ = std::make_unique(seq_len_); + dy_desc_ = std::make_unique(seq_len_); for (size_t i = 0; i < IntToSize(seq_len_); ++i) { CHECK_CUDNN_RET_WITH_EXCEPT(cudnnCreateTensorDescriptor(&dx_desc_[i]), "create x_desc failed"); diff --git a/mindspore/ccsrc/kernel/gpu/nn/lstm_grad_weight_gpu_kernel.h b/mindspore/ccsrc/kernel/gpu/nn/lstm_grad_weight_gpu_kernel.h index b28736cc96..e081b9d070 100644 --- a/mindspore/ccsrc/kernel/gpu/nn/lstm_grad_weight_gpu_kernel.h +++ b/mindspore/ccsrc/kernel/gpu/nn/lstm_grad_weight_gpu_kernel.h @@ -22,7 +22,6 @@ #include #include "kernel/gpu/gpu_kernel.h" #include "kernel/gpu/gpu_kernel_factory.h" -#include "dataset/util/make_unique.h" #include "kernel/gpu/kernel_constants.h" namespace mindspore { namespace kernel { @@ -169,8 +168,8 @@ class LstmGradWeightGpuKernel : public GpuKernel { int x_dims[3]{batch_size_, input_size_, 1}; int y_dims[3]{batch_size_, hidden_size_ * (bidirectional_ ? 2 : 1), 1}; - x_desc_ = mindspore::make_unique(seq_len_); - y_desc_ = mindspore::make_unique(seq_len_); + x_desc_ = std::make_unique(seq_len_); + y_desc_ = std::make_unique(seq_len_); for (size_t i = 0; i < IntToSize(seq_len_); ++i) { CHECK_CUDNN_RET_WITH_EXCEPT(cudnnCreateTensorDescriptor(&x_desc_[i]), "create x_desc failed"); diff --git a/tests/ut/cpp/dataset/celeba_op_test.cc b/tests/ut/cpp/dataset/celeba_op_test.cc index 69314771a3..35be4d7378 100644 --- a/tests/ut/cpp/dataset/celeba_op_test.cc +++ b/tests/ut/cpp/dataset/celeba_op_test.cc @@ -116,7 +116,7 @@ TEST_F(MindDataTestCelebaDataset, TestCelebaRepeat) { TEST_F(MindDataTestCelebaDataset, TestSubsetRandomSamplerCeleba) { std::vector indices({1}); - std::unique_ptr sampler = mindspore::make_unique(indices); + std::unique_ptr sampler = std::make_unique(indices); uint32_t expect_labels[1][40] = {{0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0,1,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1}}; std::string dir = datasets_root_path_ + "/testCelebAData/"; uint32_t count = 0; diff --git a/tests/ut/cpp/dataset/cifar_op_test.cc b/tests/ut/cpp/dataset/cifar_op_test.cc index 0cd1db65b5..dcbea83df4 100644 --- a/tests/ut/cpp/dataset/cifar_op_test.cc +++ b/tests/ut/cpp/dataset/cifar_op_test.cc @@ -92,7 +92,7 @@ TEST_F(MindDataTestCifarOp, TestSequentialSamplerCifar10) { TEST_F(MindDataTestCifarOp, TestRandomSamplerCifar10) { uint32_t original_seed = GlobalContext::config_manager()->seed(); GlobalContext::config_manager()->set_seed(0); - std::unique_ptr sampler = mindspore::make_unique(true, 12); + std::unique_ptr sampler = std::make_unique(true, 12); std::string folder_path = datasets_root_path_ + "/testCifar10Data/"; auto tree = Build({Cifarop(16, 2, 32, folder_path, std::move(sampler), 100)}); tree->Prepare(); diff --git a/tests/ut/cpp/dataset/image_folder_op_test.cc b/tests/ut/cpp/dataset/image_folder_op_test.cc index 5b118a629a..e149e687c6 100644 --- a/tests/ut/cpp/dataset/image_folder_op_test.cc +++ b/tests/ut/cpp/dataset/image_folder_op_test.cc @@ -138,7 +138,7 @@ TEST_F(MindDataTestImageFolderSampler, TestRandomImageFolder) { TEST_F(MindDataTestImageFolderSampler, TestRandomSamplerImageFolder) { int32_t original_seed = GlobalContext::config_manager()->seed(); GlobalContext::config_manager()->set_seed(0); - std::unique_ptr sampler = mindspore::make_unique(true, 12); + std::unique_ptr sampler = std::make_unique(true, 12); int32_t res[] = {2, 2, 2, 3, 2, 3, 2, 3, 1, 2, 2, 1}; // ground truth label std::string folder_path = datasets_root_path_ + "/testPK/data"; auto tree = Build({ImageFolder(16, 2, 32, folder_path, false, std::move(sampler))}); @@ -200,7 +200,7 @@ TEST_F(MindDataTestImageFolderSampler, TestSequentialImageFolderWithRepeatBatch) TEST_F(MindDataTestImageFolderSampler, TestSubsetRandomSamplerImageFolder) { // id range 0 - 10 is label 0, and id range 11 - 21 is label 1 std::vector indices({0, 1, 2, 3, 4, 5, 12, 13, 14, 15, 16, 11}); - std::unique_ptr sampler = mindspore::make_unique(indices); + std::unique_ptr sampler = std::make_unique(indices); std::string folder_path = datasets_root_path_ + "/testPK/data"; // Expect 6 samples for label 0 and 1 int res[2] = {6, 6}; @@ -238,7 +238,7 @@ TEST_F(MindDataTestImageFolderSampler, TestWeightedRandomSamplerImageFolder) { // create sampler with replacement = replacement std::unique_ptr sampler = - mindspore::make_unique(weights, num_samples, true, samples_per_buffer); + std::make_unique(weights, num_samples, true, samples_per_buffer); std::string folder_path = datasets_root_path_ + "/testPK/data"; auto tree = Build({ImageFolder(16, 2, 32, folder_path, false, std::move(sampler))}); @@ -295,7 +295,7 @@ TEST_F(MindDataTestImageFolderSampler, TestImageFolderClassIndex) { } TEST_F(MindDataTestImageFolderSampler, TestDistributedSampler) { - std::unique_ptr sampler = mindspore::make_unique(11, 10, false); + std::unique_ptr sampler = std::make_unique(11, 10, false); std::string folder_path = datasets_root_path_ + "/testPK/data"; auto tree = Build({ImageFolder(16, 2, 32, folder_path, false, std::move(sampler)), Repeat(4)}); tree->Prepare(); @@ -322,7 +322,7 @@ TEST_F(MindDataTestImageFolderSampler, TestDistributedSampler) { } TEST_F(MindDataTestImageFolderSampler, TestPKSamplerImageFolder) { - std::unique_ptr sampler = mindspore::make_unique(3, false, 4); + std::unique_ptr sampler = std::make_unique(3, false, 4); int32_t res[] = {0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3}; // ground truth label std::string folder_path = datasets_root_path_ + "/testPK/data"; auto tree = Build({ImageFolder(16, 2, 32, folder_path, false, std::move(sampler))}); @@ -431,7 +431,7 @@ TEST_F(MindDataTestImageFolderSampler, TestImageFolderDatasetSize) { } TEST_F(MindDataTestImageFolderSampler, TestImageFolderSharding1) { - std::unique_ptr sampler = mindspore::make_unique(4, 0, false); + std::unique_ptr sampler = std::make_unique(4, 0, false); std::string folder_path = datasets_root_path_ + "/testPK/data"; // numWrks, rows, conns, path, shuffle, sampler, map, numSamples, decode auto tree = Build({ImageFolder(16, 2, 32, folder_path, false, std::move(sampler), {}, 5)}); @@ -460,7 +460,7 @@ TEST_F(MindDataTestImageFolderSampler, TestImageFolderSharding1) { } TEST_F(MindDataTestImageFolderSampler, TestImageFolderSharding2) { - std::unique_ptr sampler = mindspore::make_unique(4, 3, false); + std::unique_ptr sampler = std::make_unique(4, 3, false); std::string folder_path = datasets_root_path_ + "/testPK/data"; // numWrks, rows, conns, path, shuffle, sampler, map, numSamples, decode auto tree = Build({ImageFolder(16, 16, 32, folder_path, false, std::move(sampler), {}, 12)}); diff --git a/tests/ut/cpp/dataset/manifest_op_test.cc b/tests/ut/cpp/dataset/manifest_op_test.cc index 9e36f8c747..f662f98fc8 100644 --- a/tests/ut/cpp/dataset/manifest_op_test.cc +++ b/tests/ut/cpp/dataset/manifest_op_test.cc @@ -86,7 +86,7 @@ TEST_F(MindDataTestManifest, TestSequentialManifestWithRepeat) { TEST_F(MindDataTestManifest, TestSubsetRandomSamplerManifest) { std::vector indices({1}); - std::unique_ptr sampler = mindspore::make_unique(indices); + std::unique_ptr sampler = std::make_unique(indices); std::string file = datasets_root_path_ + "/testManifestData/cpp.json"; // Expect 6 samples for label 0 and 1 auto tree = Build({Manifest(16, 2, 32, file, "train", std::move(sampler))}); diff --git a/tests/ut/cpp/dataset/project_op_test.cc b/tests/ut/cpp/dataset/project_op_test.cc index 1df2ce05bb..484396321c 100644 --- a/tests/ut/cpp/dataset/project_op_test.cc +++ b/tests/ut/cpp/dataset/project_op_test.cc @@ -45,7 +45,7 @@ TEST_F(MindDataTestProjectOp, TestProjectProject) { .SetRowsPerBuffer(16) .SetWorkerConnectorSize(16) .SetNumWorkers(16); - std::unique_ptr schema = mindspore::make_unique(); + std::unique_ptr schema = std::make_unique(); schema->LoadSchemaFile(datasets_root_path_ + "/testTFTestAllTypes/datasetSchema.json", {}); builder.SetDataSchema(std::move(schema)); Status rc = builder.Build(&my_tfreader_op); ASSERT_TRUE(rc.IsOk()); diff --git a/tests/ut/cpp/dataset/stand_alone_samplers_test.cc b/tests/ut/cpp/dataset/stand_alone_samplers_test.cc index c686a9486b..48cc811615 100644 --- a/tests/ut/cpp/dataset/stand_alone_samplers_test.cc +++ b/tests/ut/cpp/dataset/stand_alone_samplers_test.cc @@ -74,7 +74,7 @@ TEST_F(MindDataTestStandAloneSampler, TestDistributedSampler) { std::unique_ptr db; std::shared_ptr tensor; for (int i = 0; i < 6; i++) { - std::unique_ptr sampler = mindspore::make_unique(3, i % 3, (i < 3 ? false : true)); + std::unique_ptr sampler = std::make_unique(3, i % 3, (i < 3 ? false : true)); sampler->Init(&mock); sampler->GetNextBuffer(&db); db->GetTensor(&tensor, 0, 0); diff --git a/tests/ut/cpp/dataset/tfReader_op_test.cc b/tests/ut/cpp/dataset/tfReader_op_test.cc index c70d5fb6ee..5fb1f4e909 100644 --- a/tests/ut/cpp/dataset/tfReader_op_test.cc +++ b/tests/ut/cpp/dataset/tfReader_op_test.cc @@ -48,7 +48,7 @@ TEST_F(MindDataTestTFReaderOp, TestTFReaderBasic1) { builder.SetDatasetFilesList({dataset_path}) .SetRowsPerBuffer(16) .SetNumWorkers(16); - std::unique_ptr schema = mindspore::make_unique(); + std::unique_ptr schema = std::make_unique(); schema->LoadSchemaFile(datasets_root_path_ + "/testTFTestAllTypes/datasetSchema.json", {}); builder.SetDataSchema(std::move(schema)); Status rc = builder.Build(&my_tfreader_op); @@ -102,7 +102,7 @@ TEST_F(MindDataTestTFReaderOp, TestTFReaderLargeRowsPerBuffer) { builder.SetDatasetFilesList({dataset_path}) .SetRowsPerBuffer(500) .SetNumWorkers(16); - std::unique_ptr schema = mindspore::make_unique(); + std::unique_ptr schema = std::make_unique(); schema->LoadSchemaFile(datasets_root_path_ + "/testTFTestAllTypes/datasetSchema.json", {}); builder.SetDataSchema(std::move(schema)); Status rc = builder.Build(&my_tfreader_op); @@ -156,7 +156,7 @@ TEST_F(MindDataTestTFReaderOp, TestTFReaderSmallRowsPerBuffer) { builder.SetDatasetFilesList({dataset_path}) .SetRowsPerBuffer(1) .SetNumWorkers(16); - std::unique_ptr schema = mindspore::make_unique(); + std::unique_ptr schema = std::make_unique(); schema->LoadSchemaFile(datasets_root_path_ + "/testTFTestAllTypes/datasetSchema.json", {}); builder.SetDataSchema(std::move(schema)); Status rc = builder.Build(&my_tfreader_op); @@ -211,7 +211,7 @@ TEST_F(MindDataTestTFReaderOp, TestTFReaderLargeQueueSize) { .SetWorkerConnectorSize(1) .SetRowsPerBuffer(16) .SetNumWorkers(16); - std::unique_ptr schema = mindspore::make_unique(); + std::unique_ptr schema = std::make_unique(); schema->LoadSchemaFile(datasets_root_path_ + "/testTFTestAllTypes/datasetSchema.json", {}); builder.SetDataSchema(std::move(schema)); Status rc = builder.Build(&my_tfreader_op); @@ -265,7 +265,7 @@ TEST_F(MindDataTestTFReaderOp, TestTFReaderOneThread) { builder.SetDatasetFilesList({dataset_path}) .SetRowsPerBuffer(16) .SetNumWorkers(1); - std::unique_ptr schema = mindspore::make_unique(); + std::unique_ptr schema = std::make_unique(); schema->LoadSchemaFile(datasets_root_path_ + "/testTFTestAllTypes/datasetSchema.json", {}); builder.SetDataSchema(std::move(schema)); Status rc = builder.Build(&my_tfreader_op); @@ -321,7 +321,7 @@ TEST_F(MindDataTestTFReaderOp, TestTFReaderRepeat) { .SetRowsPerBuffer(16) .SetWorkerConnectorSize(16) .SetNumWorkers(16); - std::unique_ptr schema = mindspore::make_unique(); + std::unique_ptr schema = std::make_unique(); schema->LoadSchemaFile(datasets_root_path_ + "/testTFTestAllTypes/datasetSchema.json", {}); builder.SetDataSchema(std::move(schema)); Status rc= builder.Build(&my_tfreader_op); @@ -379,7 +379,7 @@ TEST_F(MindDataTestTFReaderOp, TestTFReaderSchemaConstructor) { std::string dataset_path; dataset_path = datasets_root_path_ + "/testTFTestAllTypes"; - std::unique_ptr data_schema = mindspore::make_unique(); + std::unique_ptr data_schema = std::make_unique(); std::vector columns_to_load; columns_to_load.push_back("col_sint32"); columns_to_load.push_back("col_binary"); @@ -445,7 +445,7 @@ TEST_F(MindDataTestTFReaderOp, TestTFReaderTake1Row) { std::shared_ptr my_tfreader_op; TFReaderOp::Builder builder; builder.SetDatasetFilesList({dataset_path + "/test.data"}).SetRowsPerBuffer(5).SetNumWorkers(16); - std::unique_ptr schema = mindspore::make_unique(); + std::unique_ptr schema = std::make_unique(); schema->LoadSchemaFile(datasets_root_path_ + "/testTFTestAllTypes/datasetSchema1Row.json", {}); builder.SetDataSchema(std::move(schema)); @@ -503,7 +503,7 @@ TEST_F(MindDataTestTFReaderOp, TestTFReaderTake1Buffer) { std::shared_ptr my_tfreader_op; TFReaderOp::Builder builder; builder.SetDatasetFilesList({dataset_path + "/test.data"}).SetRowsPerBuffer(5).SetNumWorkers(16); - std::unique_ptr schema = mindspore::make_unique(); + std::unique_ptr schema = std::make_unique(); schema->LoadSchemaFile(datasets_root_path_ + "/testTFTestAllTypes/datasetSchema5Rows.json", {}); builder.SetDataSchema(std::move(schema)); @@ -561,7 +561,7 @@ TEST_F(MindDataTestTFReaderOp, TestTFReaderTake7Rows) { std::shared_ptr my_tfreader_op; TFReaderOp::Builder builder; builder.SetDatasetFilesList({dataset_path + "/test.data"}).SetRowsPerBuffer(5).SetNumWorkers(16); - std::unique_ptr schema = mindspore::make_unique(); + std::unique_ptr schema = std::make_unique(); schema->LoadSchemaFile(datasets_root_path_ + "/testTFTestAllTypes/datasetSchema7Rows.json", {}); builder.SetDataSchema(std::move(schema));