From d37b4c1e88e3118bcd2eb907df81896b0587f3a5 Mon Sep 17 00:00:00 2001 From: lxh Date: Sat, 27 Feb 2021 10:46:01 +0800 Subject: [PATCH] delet trailing whitespace --- mindspore/ops/operations/sponge_ops.py | 42 +++++++++++++------------- 1 file changed, 21 insertions(+), 21 deletions(-) diff --git a/mindspore/ops/operations/sponge_ops.py b/mindspore/ops/operations/sponge_ops.py index eb3611d7dd..ab04e8d873 100644 --- a/mindspore/ops/operations/sponge_ops.py +++ b/mindspore/ops/operations/sponge_ops.py @@ -27,9 +27,9 @@ class BondForce(PrimitiveWithInfer): Calculate the force exerted by the simple harmonic bond on the corresponding atoms. Assume the number of harmonic bonds is M and the number of atoms is N. - + .. math:: - + dr = (x_1-x_2, y_1-y_2, z_1-z_2) F = (F_x, F_y, F_z) = 2*k*(1 - r_0/|dr|)*dr @@ -74,10 +74,10 @@ class BondEnergy(PrimitiveWithInfer): Assume our system has N atoms and M harmonic bonds. .. math:: - + dr = (x_1-x_2, y_1-y_2, z_1-z_2) E = k*(|dr| - r_0)^2 - + Inputs: Same as operator BondForce(). @@ -146,7 +146,7 @@ class BondForceWithAtomEnergy(PrimitiveWithInfer): BondForceWithAtomEnergy: Calculate bond force and harmonic potential energy together. - + The calculation formula is the same as operator BondForce() and BondEnergy(). Inputs: @@ -190,7 +190,7 @@ class BondForceWithAtomVirial(PrimitiveWithInfer): The Virial part is as follows: .. math:: - + dr = (x_1-x_2, y_1-y_2, z_1-z_2) virial = |dr|*(|dr| - r_0)*k @@ -233,15 +233,15 @@ class DihedralForce(PrimitiveWithInfer): the number of atoms is N. .. math:: - + dr_{ab} = (x_b-x_a, y_b-y_a, z_b-z_a) dr_{cb} = (x_b-x_c, y_b-y_c, z_b-z_c) dr_{cd} = (x_d-x_c, y_d-y_c, z_d-z_c) - + r1 = dr_{ab}*dr_{cb} r2 = dr_{cd}*dr_{cb} - - phi = pi - sign(inner_product(r1*r2), dr_{cb}) + + phi = pi - sign(inner_product(r1*r2), dr_{cb}) * arccos(inner_product(r1, r2)/|r1|/|r2|) dEdphi = n*phi*(k*cos(phi_0)*sin(n*phi) - k*sin(phi_0)*cos(n*phi))/sin(phi) dphidr1 = r2/|r1|/|r2| + cos(phi)/|r1|^2*r1 @@ -255,7 +255,7 @@ class DihedralForce(PrimitiveWithInfer): F_b = dEdrjpart - dEdri F_c = - dEdrl - dEdrjpart F_d = dEdrl - + Inputs: - **uint_crd_f** (Tensor, uint32) - [N, 3], the unsigned int coordinates value of each atom. @@ -277,7 +277,7 @@ class DihedralForce(PrimitiveWithInfer): Supported Platforms: ``GPU`` - + Examples: """ @@ -312,9 +312,9 @@ class DihedralEnergy(PrimitiveWithInfer): Calculate the potential energy caused by dihedral terms for each 4-atom pair. Assume our system has N atoms and M dihedral terms. - + .. math:: - + E = k(1 + cos(n*phi - phi_0)) Inputs: @@ -363,7 +363,7 @@ class DihedralAtomEnergy(PrimitiveWithInfer): energy of each atom. The calculation formula is the same as operator DihedralEnergy(). - + Inputs: Same as operator DihedralEnergy(). @@ -451,13 +451,13 @@ class DihedralForceWithAtomEnergy(PrimitiveWithInfer): class AngleForce(PrimitiveWithInfer): """ AngleForce: - + Calculate the force exerted by angles made of 3 atoms on the corresponding atoms. Assume the number of angles is M and the number of atoms is N. .. math:: - + dr_{ab} = (x_b-x_a, y_b-y_a, z_b-z_a) dr_{cb} = (x_b-x_c, y_b-y_c, z_b-z_c) theta = arccos(inner_product(dr_{ab}, dr_{cb})/|dr_{ab}|/|dr_{cb}|) @@ -470,7 +470,7 @@ class AngleForce(PrimitiveWithInfer): Inputs: - **uint_crd_f** (Tensor, uint32) - [N, 3], the unsigned int coordinate value of each atom. - - **scaler_f** (Tensor, float32) - [3, 1], the 3-D scale factor between + - **scaler_f** (Tensor, float32) - [3, 1], the 3-D scale factor between the real space float coordinates and the unsigned int coordinates. - **atom_a** (Tensor, int32) - [M, 1], the 1st atom index of each angle. - **atom_b** (Tensor, int32) - [M, 1], the 2nd and the central atom index @@ -483,9 +483,9 @@ class AngleForce(PrimitiveWithInfer): Outputs: - **frc_f** (Tensor, float32) - [N, 3], the force felt by each atom. - Supported Platforms: + Supported Platforms: ``GPU`` - + Examples: """ @@ -516,7 +516,7 @@ class AngleEnergy(PrimitiveWithInfer): Calculate the energy caused by 3-atoms angle term. .. math:: - + dr_{ab} = (x_b-x_a, y_b-y_a, z_b-z_a) dr_{cb} = (x_b-x_c, y_b-y_c, z_b-z_c) theta = arccos(inner_product(dr_{ab}, dr_{cb})/|dr_{ab}|/|dr_{cb}|)