diff --git a/mindspore/nn/layer/conv.py b/mindspore/nn/layer/conv.py index a8465775c1..6c5baf351c 100644 --- a/mindspore/nn/layer/conv.py +++ b/mindspore/nn/layer/conv.py @@ -505,10 +505,10 @@ class Conv3d(_Conv): Args: in_channels (int): The number of input channel :math:`C_{in}`. out_channels (int): The number of output channel :math:`C_{out}`. - kernel_size (Union[int, tuple[int]]): The data type is int or a tuple of 3 integers. Specifies the height - and width of the 3D convolution window. Single int means the value is for the depth, height and the width - of the kernel. A tuple of 3 ints means the first value is for the depth, second value is for height - and the other is for the width of the kernel. + kernel_size (Union[int, tuple[int]]): The data type is int or a tuple of 3 integers. Specifies the depth, height + and width of the 3D convolution window. Single int means the value is for the depth, height and the width of + the kernel. A tuple of 3 ints means the first value is for the depth, second value is for height and the + other is for the width of the kernel. stride (Union[int, tuple[int]]): The distance of kernel moving, an int number that represents the depth, height and width of movement are both strides, or a tuple of three int numbers that represent depth, height and width of movement respectively. Default: 1. @@ -531,7 +531,7 @@ class Conv3d(_Conv): padding (Union(int, tuple[int])): Implicit paddings on both sides of the input. The data type is int or a tuple of 6 integers. Default: 0. If `padding` is an integer, the paddings of head, tail, top, bottom, left and right are the same, equal to padding. - If `paddings` is a tuple of three integers, the padding of head, tail, top, bottom, left and right equal to + If `paddings` is a tuple of six integers, the padding of head, tail, top, bottom, left and right equal to padding[0], padding[1], padding[2], padding[3], padding[4] and padding[5] correspondingly. dilation (Union[int, tuple[int]]): The data type is int or a tuple of 3 integers : math:`(dilation_d, dilation_h, dilation_w)`. Currently, dilation on depth only supports the case of 1. @@ -561,7 +561,7 @@ class Conv3d(_Conv): Raises: TypeError: If `in_channels`, `out_channels` or `group` is not an int. - TypeError: If `kernel_size`, `stride`, `padding` or `dilation` is neither an int not a tuple of three. + TypeError: If `kernel_size`, `stride`, `padding` or `dilation` is neither an int nor a tuple of six. ValueError: If `out_channels`, `kernel_size`, `stride` or `dilation` is less than 1. ValueError: If `padding` is less than 0. ValueError: If `pad_mode` is not one of 'same', 'valid', 'pad'. diff --git a/mindspore/ops/operations/nn_ops.py b/mindspore/ops/operations/nn_ops.py index b8d19665b0..8334a634e4 100644 --- a/mindspore/ops/operations/nn_ops.py +++ b/mindspore/ops/operations/nn_ops.py @@ -4187,7 +4187,7 @@ class Adam(PrimitiveWithInfer): TypeError: If `beta1_power`, `beta2_power1`, `lr`, `beta1`, `beta2`, `epsilon` or `gradient` is not a Tensor. Supported Platforms: - ``Ascend`` ``GPU`` ``CPU`` + ``Ascend`` ``GPU`` Examples: >>> import numpy as np @@ -4208,7 +4208,7 @@ class Adam(PrimitiveWithInfer): ... >>> net = Net() >>> gradient = Tensor(np.ones([2, 2]).astype(np.float32)) - >>> net(0.9, 0.999, 0.001, 0.9, 0.999, 1e-8, gradient) + >>> output = net(0.9, 0.999, 0.001, 0.9, 0.999, 1e-8, gradient) >>> print(net.var.asnumpy()) [[0.9996838 0.9996838] [0.9996838 0.9996838]] @@ -6386,7 +6386,7 @@ class LARSUpdate(PrimitiveWithInfer): use_clip (bool): Whether to use clip operation for calculating the local learning rate. Default: False. Inputs: - - **weight** (Tensor) - The weight to be updated. + - **weight** (Tensor) - A tensor, representing the weight. - **gradient** (Tensor) - The gradient of weight, which has the same shape and dtype with weight. - **norm_weight** (Tensor) - A scalar tensor, representing the sum of squares of weight. - **norm_gradient** (Tensor) - A scalar tensor, representing the sum of squares of gradient. @@ -7717,7 +7717,7 @@ class Conv3D(PrimitiveWithInfer): Args: out_channels (int): The number of output channel :math:`C_{out}`. - kernel_size (Union[int, tuple[int]]): The data type is int or a tuple of 3 integers. Specifies the height + kernel_size (Union[int, tuple[int]]): The data type is int or a tuple of 3 integers. Specifies the depth, height and width of the 3D convolution window. Single int means the value is for the depth, height and the width of the kernel. A tuple of 3 ints means the first value is for the depth, height and the other is for the width of the kernel. @@ -7768,7 +7768,7 @@ class Conv3D(PrimitiveWithInfer): Raises: TypeError: If `out_channel` or `group` is not an int. - TypeError: If `kernel_size`, `stride`, `pad` or `dilation` is neither an int not a tuple. + TypeError: If `kernel_size`, `stride`, `pad` or `dilation` is neither an int nor a tuple of six. ValueError: If `out_channel`, `kernel_size`, `stride` or `dilation` is less than 1. ValueError: If `pad` is less than 0. ValueError: If `pad_mode` is not one of 'same', 'valid', 'pad'.