@@ -64,7 +64,7 @@ Previously, we have incomplete support for keyword arguments `out` and `where` i
- 1.1.0 | 1.2.0 |
+ 1.1.1 | 1.2.0-rc1 |
@@ -189,7 +189,7 @@ def construct(self, *inputs):
- 1.1.0 | 1.2.0 |
+ 1.1.1 | 1.2.0-rc1 |
diff --git a/mindspore/numpy/array_creations.py b/mindspore/numpy/array_creations.py
index 7ffe8d669d..1ddaf0e984 100644
--- a/mindspore/numpy/array_creations.py
+++ b/mindspore/numpy/array_creations.py
@@ -1293,14 +1293,14 @@ def meshgrid(*xi, sparse=False, indexing='xy'):
>>> y = np.linspace(0, 1, 2)
>>> xv, yv = np.meshgrid(x, y)
>>> print(xv)
- [[0. , 0.5, 1. ],
- [0. , 0.5, 1. ]]
+ [[0. 0.5 1. ]
+ [0. 0.5 1. ]]
>>> print(yv)
- [[0., 0., 0.],
- [1., 1., 1.]]
+ [[0. 0. 0.],
+ [1. 1. 1.]]
>>> xv, yv = np.meshgrid(x, y, sparse=True)
>>> print(xv)
- [[0. , 0.5, 1. ]]
+ [[0. 0.5 1. ]]
>>> print(yv)
[[0.],
[1.]
@@ -1426,19 +1426,19 @@ class mGridClass(nd_grid):
>>> from mindspore.numpy import mgrid
>>> output = mgrid[0:5, 0:5]
>>> print(output)
- [[[0, 0, 0, 0, 0],
- [1, 1, 1, 1, 1],
- [2, 2, 2, 2, 2],
- [3, 3, 3, 3, 3],
- [4, 4, 4, 4, 4]],
- [[0, 1, 2, 3, 4],
- [0, 1, 2, 3, 4],
- [0, 1, 2, 3, 4],
- [0, 1, 2, 3, 4],
- [0, 1, 2, 3, 4]]]
+ [[[0 0 0 0 0]
+ [1 1 1 1 1]
+ [2 2 2 2 2]
+ [3 3 3 3 3]
+ [4 4 4 4 4]]
+ [[0 1 2 3 4]
+ [0 1 2 3 4]
+ [0 1 2 3 4]
+ [0 1 2 3 4]
+ [0 1 2 3 4]]]
>>> output = mgrid[-1:1:5j]
>>> print(output)
- [-1. , -0.5, 0. , 0.5, 1. ]
+ [-1. -0.5 0. 0.5 1. ]
"""
def __init__(self):
super(mGridClass, self).__init__(sparse=False)
@@ -1473,13 +1473,13 @@ class oGridClass(nd_grid):
[Tensor(shape=[5, 1], dtype=Int32, value=
[[0],
[1],
- [2],
+ [2]
[3],
[4]]), Tensor(shape=[1, 5], dtype=Int32, value=
[[0, 1, 2, 3, 4]])]
>>> output = ogrid[-1:1:5j]
>>> print(output)
- [-1. , -0.5, 0. , 0.5, 1. ]
+ [-1. -0.5 0. 0.5 1. ]
"""
def __init__(self):
super(oGridClass, self).__init__(sparse=True)
@@ -1684,10 +1684,10 @@ def ix_(*args):
>>> import mindspore.numpy as np
>>> ixgrid = np.ix_(np.array([0, 1]), np.array([2, 4]))
>>> print(ixgrid)
- [Tensor(shape=[2, 1], dtype=Int32, value=
+ (Tensor(shape=[2, 1], dtype=Int32, value=
[[0],
[1]]), Tensor(shape=[1, 2], dtype=Int32, value=
- [[2, 4]])]
+ [[2, 4]]))
"""
# TODO boolean mask
_check_input_tensor(*args)
@@ -1784,8 +1784,9 @@ def indices(dimensions, dtype=mstype.int32, sparse=False):
``Ascend`` ``GPU`` ``CPU``
Examples:
+ >>> import mindspore.numpy as np
>>> grid = np.indices((2, 3))
- >>> print(indices)
+ >>> print(grid)
[Tensor(shape=[2, 3], dtype=Int32, value=
[[0, 0, 0],
[1, 1, 1]]), Tensor(shape=[2, 3], dtype=Int32, value=
diff --git a/mindspore/numpy/array_ops.py b/mindspore/numpy/array_ops.py
index 931850025e..97c65df556 100644
--- a/mindspore/numpy/array_ops.py
+++ b/mindspore/numpy/array_ops.py
@@ -492,16 +492,14 @@ def column_stack(tup):
ValueError: If `tup` is empty.
Examples:
- >>> import mindspore.numpy as mnp
- >>> import numpy as onp
- >>> from mindspore import Tensor
- >>> x1 = Tensor(onp.array([1, 2, 3]).astype('int32'))
- >>> x2 = Tensor(onp.array([4, 5, 6]).astype('int32'))
- >>> output = mnp.column_stack((x1, x2))
+ >>> import mindspore.numpy as np
+ >>> x1 = np.array([1, 2, 3]).astype('int32')
+ >>> x2 = np.array([4, 5, 6]).astype('int32')
+ >>> output = np.column_stack((x1, x2))
>>> print(output)
- [[1, 4],
- [2, 5],
- [3, 6]]
+ [[1 4]
+ [2 5]
+ [3 6]]
"""
if isinstance(tup, Tensor):
return tup
@@ -541,15 +539,13 @@ def vstack(tup):
ValueError: If `tup` is empty.
Examples:
- >>> import mindspore.numpy as mnp
- >>> import numpy as onp
- >>> from mindspore import Tensor
- >>> x1 = Tensor(onp.array([1, 2, 3]).astype('int32'))
- >>> x2 = Tensor(onp.array([4, 5, 6]).astype('int32'))
- >>> output = mnp.vstack((x1, x2))
+ >>> import mindspore.numpy as np
+ >>> x1 = np.array([1, 2, 3]).astype('int32')
+ >>> x2 = np.array([4, 5, 6]).astype('int32')
+ >>> output = np.vstack((x1, x2))
>>> print(output)
- [[1, 2, 3],
- [4, 5, 6]]
+ [[1 2 3]
+ [4 5 6]]
"""
if isinstance(tup, Tensor):
return tup
@@ -690,12 +686,13 @@ def where(condition, x=None, y=None):
>>> y = np.full((2, 1, 1), 7)
>>> output = np.where(condition, x, y)
>>> print(output)
- [[[7, 5],
- [7, 5],
- [7, 5]],
- [[7, 5],
- [7, 5],
- [7, 5]]]
+ [[[7 5]
+ [7 5]
+ [7 5]]
+
+ [[7 5]
+ [7 5]
+ [7 5]]]
"""
# type promotes input tensors
dtype1 = F.dtype(x)
@@ -978,7 +975,7 @@ def unique(x, return_inverse=False):
>>> input_x = np.asarray([1, 2, 2, 2, 3, 4, 5]).astype('int32')
>>> output_x = np.unique(input_x)
>>> print(output_x)
- [1, 2, 3, 4, 5]
+ [1 2 3 4 5]
>>> output_x = np.unique(input_x, return_inverse=True)
>>> print(output_x)
(Tensor(shape=[5], dtype=Int32, value= [ 1, 2, 3, 4, 5]), Tensor(shape=[7], dtype=Int32,
@@ -1055,7 +1052,7 @@ def roll(a, shift, axis=None):
Tensor, with the same shape as a.
Supported Platforms:
- ``GPU``
+ ``Ascend`` ``GPU`` ``CPU``
Raises:
TypeError: If input arguments have types not specified above.
diff --git a/mindspore/numpy/logic_ops.py b/mindspore/numpy/logic_ops.py
index 0ad4e4d7e2..49abaf3573 100644
--- a/mindspore/numpy/logic_ops.py
+++ b/mindspore/numpy/logic_ops.py
@@ -57,8 +57,8 @@ def not_equal(x1, x2, dtype=None):
>>> a = np.asarray([1, 2])
>>> b = np.asarray([[1, 3],[1, 4]])
>>> print(np.not_equal(a, b))
- >>> [[False True]
- [False True]]
+ [[False True]
+ [False True]]
"""
_check_input_tensor(x1, x2)
return _apply_tensor_op(F.not_equal, x1, x2, dtype=dtype)
@@ -253,9 +253,6 @@ def isfinite(x, dtype=None):
>>> output = np.isfinite(np.array([np.inf, 1., np.nan]).astype('float32'))
>>> print(output)
[False True False]
- >>> output = np.isfinite(np.log(np.array(-1.).astype('float32')))
- >>> print(output)
- False
"""
return _apply_tensor_op(F.isfinite, x, dtype=dtype)
diff --git a/mindspore/numpy/math_ops.py b/mindspore/numpy/math_ops.py
index 196a549f93..cedd242542 100644
--- a/mindspore/numpy/math_ops.py
+++ b/mindspore/numpy/math_ops.py
@@ -258,9 +258,9 @@ def add(x1, x2, dtype=None):
>>> x2 = np.full((3, 2), [3, 4])
>>> output = np.add(x1, x2)
>>> print(output)
- [[4, 6],
- [4, 6],
- [4, 6]]
+ [[4 6]
+ [4 6]
+ [4 6]]
"""
# broadcast is not fully supported in tensor_add on CPU,
# so we use tensor_sub as a substitute solution
@@ -297,9 +297,9 @@ def subtract(x1, x2, dtype=None):
>>> x2 = np.full((3, 2), [3, 4])
>>> output = np.subtract(x1, x2)
>>> print(output)
- [[-2, -2],
- [-2, -2],
- [-2, -2]]
+ [[-2 -2]
+ [-2 -2]
+ [-2 -2]]
"""
return _apply_tensor_op(F.tensor_sub, x1, x2, dtype=dtype)
@@ -331,9 +331,9 @@ def multiply(x1, x2, dtype=None):
>>> x2 = np.full((3, 2), [3, 4])
>>> output = np.multiply(x1, x2)
>>> print(output)
- [[3, 8],
- [3, 8],
- [3, 8]]
+ [[3 8]
+ [3 8]
+ [3 8]]
"""
if _get_device() == 'CPU':
_check_input_tensor(x1, x2)
@@ -374,9 +374,9 @@ def divide(x1, x2, dtype=None):
>>> x2 = np.full((3, 2), [3, 4])
>>> output = np.divide(x1, x2)
>>> print(output)
- [[0.33333333, 0.5],
- [0.33333333, 0.5],
- [0.33333333, 0.5]]
+ [[0.33333334 0.5 ]
+ [0.33333334 0.5 ]
+ [0.33333334 0.5 ]]
"""
if not _check_is_float(F.dtype(x1)) and not _check_is_float(F.dtype(x2)):
x1 = F.cast(x1, mstype.float32)
@@ -413,9 +413,9 @@ def true_divide(x1, x2, dtype=None):
>>> x2 = np.full((3, 2), [3, 4])
>>> output = np.true_divide(x1, x2)
>>> print(output)
- [[0.33333333, 0.5],
- [0.33333333, 0.5],
- [0.33333333, 0.5]]
+ [[0.33333334 0.5 ]
+ [0.33333334 0.5 ]
+ [0.33333334 0.5 ]]
"""
return divide(x1, x2, dtype=dtype)
@@ -450,9 +450,9 @@ def power(x1, x2, dtype=None):
>>> x2 = np.full((3, 2), [3, 4]).astype('float32')
>>> output = np.power(x1, x2)
>>> print(output)
- [[ 1, 16],
- [ 1, 16],
- [ 1, 16]]
+ [[ 1 16]
+ [ 1 16]
+ [ 1 16]]
"""
return _apply_tensor_op(F.tensor_pow, x1, x2, dtype=dtype)
@@ -708,8 +708,8 @@ def dot(a, b):
>>> b = np.full((2, 3, 4), 5).astype('float32')
>>> output = np.dot(a, b)
>>> print(output)
- [[[105, 105, 105, 105],
- [105, 105, 105, 105]]]
+ [[[105. 105. 105. 105.]
+ [105. 105. 105. 105.]]]
"""
ndim_a, ndim_b = F.rank(a), F.rank(b)
if ndim_a > 0 and ndim_b >= 2:
@@ -760,13 +760,13 @@ def outer(a, b):
>>> b = np.full(4, 3).astype('float32')
>>> output = np.outer(a, b)
>>> print(output)
- [[6, 6, 6, 6],
- [6, 6, 6, 6],
- [6, 6, 6, 6],
- [6, 6, 6, 6],
- [6, 6, 6, 6],
- [6, 6, 6, 6],
- [6, 6, 6, 6]]
+ [[6. 6. 6. 6.]
+ [6. 6. 6. 6.]
+ [6. 6. 6. 6.]
+ [6. 6. 6. 6.]
+ [6. 6. 6. 6.]
+ [6. 6. 6. 6.]
+ [6. 6. 6. 6.]]
"""
_check_input_tensor(a, b)
if F.rank(a) != 1:
@@ -1478,7 +1478,7 @@ def amin(a, axis=None, keepdims=False, initial=None, where=True):
[0. 1.]
>>> output = np.amin(a, axis=1)
>>> print(output)
- [0, 2]
+ [0. 2.]
>>> output = np.amin(a, where=np.array([False, True]), initial=10, axis=0)
>>> print(output)
[10. 1.]
@@ -3733,7 +3733,7 @@ def promote_types(type1, type2):
>>> import mindspore.numpy as np
>>> output = np.promote_types(np.float32, np.float64)
>>> print(output)
- np.float64
+ Float64
"""
type1 = _check_dtype(type1)
type2 = _check_dtype(type2)
| | |