diff --git a/mindspore/nn/cell.py b/mindspore/nn/cell.py index 6fa9b5d331..faa2643ab7 100755 --- a/mindspore/nn/cell.py +++ b/mindspore/nn/cell.py @@ -51,6 +51,9 @@ class Cell(Cell_): Args: auto_prefix (bool): Recursively generate namespaces. Default: True. + Supported Platforms: + ``Ascend`` ``GPU`` ``CPU`` + Examples: >>> class MyCell(Cell): >>> def __init__(self): diff --git a/mindspore/nn/layer/activation.py b/mindspore/nn/layer/activation.py index e9025ea256..53693e9fb9 100644 --- a/mindspore/nn/layer/activation.py +++ b/mindspore/nn/layer/activation.py @@ -67,6 +67,9 @@ class Softmax(Cell): Outputs: Tensor, which has the same type and shape as `x` with values in the range[0,1]. + Supported Platforms: + ``Ascend`` ``GPU`` ``CPU`` + Examples: >>> input_x = Tensor(np.array([-1, -2, 0, 2, 1]), mindspore.float16) >>> softmax = nn.Softmax() @@ -104,6 +107,9 @@ class LogSoftmax(Cell): Outputs: Tensor, which has the same type and shape as the input as `x` with values in the range[-inf,0). + Supported Platforms: + ``Ascend`` ``GPU`` + Examples: >>> input_x = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]), mindspore.float32) >>> log_softmax = nn.LogSoftmax() @@ -174,6 +180,9 @@ class ReLU(Cell): Outputs: Tensor, with the same type and shape as the `input_data`. + Supported Platforms: + ``Ascend`` ``GPU`` ``CPU`` + Examples: >>> input_x = Tensor(np.array([-1, 2, -3, 2, -1]), mindspore.float16) >>> relu = nn.ReLU() @@ -204,6 +213,9 @@ class ReLU6(Cell): Outputs: Tensor, which has the same type as `input_data`. + Supported Platforms: + ``Ascend`` ``GPU`` ``CPU`` + Examples: >>> input_x = Tensor(np.array([-1, -2, 0, 2, 1]), mindspore.float16) >>> relu6 = nn.ReLU6() @@ -242,6 +254,9 @@ class LeakyReLU(Cell): Outputs: Tensor, has the same type and shape as the `input_x`. + Supported Platforms: + ``Ascend`` ``GPU`` + Examples: >>> input_x = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]), mindspore.float32) >>> leaky_relu = nn.LeakyReLU() @@ -287,6 +302,9 @@ class Tanh(Cell): Outputs: Tensor, with the same type and shape as the `input_data`. + Supported Platforms: + ``Ascend`` ``GPU`` ``CPU`` + Examples: >>> input_x = Tensor(np.array([1, 2, 3, 2, 1]), mindspore.float16) >>> tanh = nn.Tanh() @@ -319,6 +337,9 @@ class GELU(Cell): Outputs: Tensor, with the same type and shape as the `input_data`. + Supported Platforms: + ``Ascend`` ``GPU`` + Examples: >>> input_x = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]), mindspore.float32) >>> gelu = nn.GELU() @@ -351,6 +372,9 @@ class Sigmoid(Cell): Outputs: Tensor, with the same type and shape as the `input_data`. + Supported Platforms: + ``Ascend`` ``GPU`` ``CPU`` + Examples: >>> input_x = Tensor(np.array([-1, -2, 0, 2, 1]), mindspore.float16) >>> sigmoid = nn.Sigmoid() @@ -390,6 +414,9 @@ class PReLU(Cell): Outputs: Tensor, with the same type and shape as the `input_data`. + Supported Platforms: + ``Ascend`` + Examples: >>> input_x = Tensor(np.array([[[[0.1, 0.6], [0.9, 0.9]]]]), mindspore.float32) >>> prelu = nn.PReLU() @@ -444,6 +471,9 @@ class HSwish(Cell): Outputs: Tensor, with the same type and shape as the `input_data`. + Supported Platforms: + ``GPU`` + Examples: >>> input_x = Tensor(np.array([-1, -2, 0, 2, 1]), mindspore.float16) >>> hswish = nn.HSwish() @@ -479,6 +509,9 @@ class HSigmoid(Cell): Outputs: Tensor, with the same type and shape as the `input_data`. + Supported Platforms: + ``GPU`` + Examples: >>> input_x = Tensor(np.array([-1, -2, 0, 2, 1]), mindspore.float16) >>> hsigmoid = nn.HSigmoid() @@ -514,6 +547,9 @@ class LogSigmoid(Cell): Outputs: Tensor, with the same type and shape as the `input_data`. + Supported Platforms: + ``Ascend`` ``GPU`` + Examples: >>> net = nn.LogSigmoid() >>> input_x = Tensor(np.array([1.0, 2.0, 3.0]), mindspore.float32) diff --git a/mindspore/nn/layer/basic.py b/mindspore/nn/layer/basic.py index 18033a48c2..696cf58153 100644 --- a/mindspore/nn/layer/basic.py +++ b/mindspore/nn/layer/basic.py @@ -72,6 +72,9 @@ class Dropout(Cell): Outputs: Tensor, output tensor with the same shape as the input. + Supported Platforms: + ``Ascend`` ``GPU`` + Examples: >>> x = Tensor(np.ones([2, 2, 3]), mindspore.float32) >>> net = nn.Dropout(keep_prob=0.8) @@ -139,6 +142,9 @@ class Flatten(Cell): Tensor, the shape of the output tensor is :math:`(N, X)`, where :math:`X` is the product of the remaining dimensions. + Supported Platforms: + ``Ascend`` ``GPU`` ``CPU`` + Examples: >>> input = Tensor(np.array([[[1.2, 1.2], [2.1, 2.1]], [[2.2, 2.2], [3.2, 3.2]]]), mindspore.float32) >>> net = nn.Flatten() @@ -195,6 +201,9 @@ class Dense(Cell): Outputs: Tensor of shape :math:`(*, out\_channels)`. + Supported Platforms: + ``Ascend`` ``GPU`` ``CPU`` + Examples: >>> input = Tensor(np.random.randint(0, 255, [2, 3]), mindspore.float32) >>> net = nn.Dense(3, 4) @@ -316,6 +325,9 @@ class ClipByNorm(Cell): Outputs: Tensor, clipped tensor with the same shape as the input, whose type is float32. + Supported Platforms: + ``Ascend`` ``GPU`` + Examples: >>> net = nn.ClipByNorm() >>> input = Tensor(np.random.randint(0, 10, [4, 16]), mindspore.float32) @@ -387,6 +399,9 @@ class Norm(Cell): Tensor, output tensor with dimensions in 'axis' reduced to 1 will be returned if 'keep_dims' is True; otherwise a Tensor with dimensions in 'axis' removed is returned. + Supported Platforms: + ``Ascend`` ``GPU`` + Examples: >>> net = nn.Norm(axis=0) >>> input = Tensor(np.random.randint(0, 10, [2, 4]), mindspore.float32) @@ -444,6 +459,9 @@ class OneHot(Cell): Tensor, the one-hot tensor of data type 'dtype' with dimension at 'axis' expanded to 'depth' and filled with on_value and off_value. + Supported Platforms: + ``Ascend`` ``GPU`` ``CPU`` + Examples: >>> net = nn.OneHot(depth=4, axis=1) >>> indices = Tensor([[1, 3], [0, 2]], dtype=mindspore.int32) @@ -501,6 +519,9 @@ class Pad(Cell): is [[1,2,3],[4,5,6],[7,8,9]] and `paddings` is [[1,1],[2,2]], then the Outputs is [[2,1,1,2,3,3,2],[2,1,1,2,3,3,2],[5,4,4,5,6,6,5],[8,7,7,8,9,9,8],[8,7,7,8,9,9,8]]. + Supported Platforms: + ``Ascend`` ``GPU`` + Examples: >>> from mindspore import Tensor >>> from mindspore.ops import operations as P @@ -587,6 +608,9 @@ class Interpolate(Cell): If scale is set, the result is 4-D tensor with shape:math:'(batch, channels, scale_factor * height, scale_factor * width)' in float32 + Supported Platforms: + ``Ascend`` + Examples: >>> from mindspore.ops import operations as P >>> tensor = Tensor([[[[1, 2, 3, 4], [5, 6, 7, 8]]]], mindspore.float32) @@ -630,6 +654,9 @@ class Unfold(Cell): Tensor, a 4-D tensor whose data type is same as 'input_x', and the shape is [out_batch, out_depth, out_row, out_col], the out_batch is the same as the in_batch. + Supported Platforms: + ``Ascend`` + Examples: >>> net = Unfold(ksizes=[1, 2, 2, 1], strides=[1, 2, 2, 1], rates=[1, 2, 2, 1]) >>> image = Tensor(np.ones([2, 3, 6, 6]), dtype=mstype.float16) @@ -675,6 +702,9 @@ class Tril(Cell): Outputs: Tensor, has the same type as input `x`. + Supported Platforms: + ``Ascend`` + Examples: >>> x = Tensor(np.array([[1, 2], [3, 4]])) >>> tril = nn.Tril() @@ -757,6 +787,9 @@ class MatrixDiag(Cell): Outputs: Tensor, has the same type as input `x`. The shape must be x.shape + (x.shape[-1], ). + Supported Platforms: + ``Ascend`` + Examples: >>> x = Tensor(np.array([1, -1]), mstype.float32) >>> matrix_diag = nn.MatrixDiag() @@ -789,6 +822,9 @@ class MatrixDiagPart(Cell): Outputs: Tensor, has the same type as input `x`. The shape must be x.shape[:-2] + [min(x.shape[-2:])]. + Supported Platforms: + ``Ascend`` + Examples: >>> x = Tensor([[[-1, 0], [0, 1]], [[-1, 0], [0, 1]], [[-1, 0], [0, 1]]], mindspore.float32) >>> matrix_diag_part = nn.MatrixDiagPart() @@ -823,6 +859,9 @@ class MatrixSetDiag(Cell): Outputs: Tensor, has the same type and shape as input `x`. + Supported Platforms: + ``Ascend`` + Examples: >>> x = Tensor([[[-1, 0], [0, 1]], [[-1, 0], [0, 1]], [[-1, 0], [0, 1]]], mindspore.float32) >>> diagonal = Tensor([[-1., 2.], [-1., 1.], [-1., 1.]], mindspore.float32) diff --git a/mindspore/nn/layer/combined.py b/mindspore/nn/layer/combined.py index 981b11add4..8475c01122 100644 --- a/mindspore/nn/layer/combined.py +++ b/mindspore/nn/layer/combined.py @@ -76,6 +76,9 @@ class Conv2dBnAct(Cell): Outputs: Tensor of shape :math:`(N, C_{out}, H_{out}, W_{out})`. + Supported Platforms: + ``Ascend`` ``GPU`` + Examples: >>> net = nn.Conv2dBnAct(120, 240, 4, has_bn=True, activation='relu') >>> input = Tensor(np.ones([1, 120, 1024, 640]), mindspore.float32) @@ -168,6 +171,9 @@ class DenseBnAct(Cell): Outputs: Tensor of shape :math:`(N, out\_channels)`. + Supported Platforms: + ``Ascend`` + Examples: >>> net = nn.DenseBnAct(3, 4) >>> input = Tensor(np.random.randint(0, 255, [2, 3]), mindspore.float32) diff --git a/mindspore/nn/layer/container.py b/mindspore/nn/layer/container.py index 1e602143f3..711f6522f8 100644 --- a/mindspore/nn/layer/container.py +++ b/mindspore/nn/layer/container.py @@ -80,6 +80,9 @@ class SequentialCell(Cell): Outputs: Tensor, the output Tensor with shape depending on the input and defined sequence of Cells. + Supported Platforms: + ``Ascend`` ``GPU`` + Examples: >>> conv = nn.Conv2d(3, 2, 3, pad_mode='valid') >>> bn = nn.BatchNorm2d(2) @@ -184,6 +187,9 @@ class CellList(_CellListBase, Cell): Args: args (list, optional): List of subclass of Cell. + Supported Platforms: + ``Ascend`` ``GPU`` + Examples: >>> conv = nn.Conv2d(100, 20, 3) >>> bn = nn.BatchNorm2d(20) diff --git a/mindspore/nn/layer/conv.py b/mindspore/nn/layer/conv.py index 3bd3cf6c54..fa93080479 100644 --- a/mindspore/nn/layer/conv.py +++ b/mindspore/nn/layer/conv.py @@ -196,6 +196,9 @@ class Conv2d(_Conv): Outputs: Tensor of shape :math:`(N, C_{out}, H_{out}, W_{out})` or `(N, H_{out}, W_{out}, C_{out})`. + Supported Platforms: + ``Ascend`` ``GPU`` ``CPU`` + Examples: >>> net = nn.Conv2d(120, 240, 4, has_bias=False, weight_init='normal') >>> input = Tensor(np.ones([1, 120, 1024, 640]), mindspore.float32) @@ -372,6 +375,9 @@ class Conv1d(_Conv): Outputs: Tensor of shape :math:`(N, C_{out}, W_{out})`. + Supported Platforms: + ``Ascend`` ``GPU`` + Examples: >>> net = nn.Conv1d(120, 240, 4, has_bias=False, weight_init='normal') >>> input = Tensor(np.ones([1, 120, 640]), mindspore.float32) @@ -543,6 +549,9 @@ class Conv2dTranspose(_Conv): Outputs: Tensor of shape :math:`(N, C_{out}, H_{out}, W_{out})`. + Supported Platforms: + ``Ascend`` ``GPU`` + Examples: >>> net = nn.Conv2dTranspose(3, 64, 4, has_bias=False, weight_init='normal', pad_mode='pad') >>> input = Tensor(np.ones([1, 3, 16, 50]), mindspore.float32) @@ -719,6 +728,9 @@ class Conv1dTranspose(_Conv): Outputs: Tensor of shape :math:`(N, C_{out}, W_{out})`. + Supported Platforms: + ``Ascend`` ``GPU`` + Examples: >>> net = nn.Conv1dTranspose(3, 64, 4, has_bias=False, weight_init='normal', pad_mode='pad') >>> input = Tensor(np.ones([1, 3, 50]), mindspore.float32) diff --git a/mindspore/nn/layer/embedding.py b/mindspore/nn/layer/embedding.py index 6b0556eb17..ad947d7f31 100755 --- a/mindspore/nn/layer/embedding.py +++ b/mindspore/nn/layer/embedding.py @@ -60,6 +60,9 @@ class Embedding(Cell): Outputs: Tensor of shape :math:`(\text{batch_size}, \text{input_length}, \text{embedding_size})`. + Supported Platforms: + ``Ascend`` ``GPU`` + Examples: >>> net = nn.Embedding(20000, 768, True) >>> input_data = Tensor(np.ones([8, 128]), mindspore.int32) @@ -160,6 +163,9 @@ class EmbeddingLookup(Cell): Outputs: Tensor, the shape of tensor is :math:`(z_1, z_2, ..., z_N)`. + Supported Platforms: + ``Ascend`` ``GPU`` ``CPU`` + Examples: >>> input_indices = Tensor(np.array([[1, 0], [3, 2]]), mindspore.int32) >>> result = nn.EmbeddingLookup(4,2)(input_indices) diff --git a/mindspore/nn/layer/image.py b/mindspore/nn/layer/image.py index aea86b3658..3a488d69c6 100644 --- a/mindspore/nn/layer/image.py +++ b/mindspore/nn/layer/image.py @@ -50,6 +50,9 @@ class ImageGradients(Cell): - **dy** (Tensor) - vertical image gradients, the same type and shape as input. - **dx** (Tensor) - horizontal image gradients, the same type and shape as input. + Supported Platforms: + ``Ascend`` ``GPU`` + Examples: >>> net = nn.ImageGradients() >>> image = Tensor(np.array([[[[1,2],[3,4]]]]), dtype=mindspore.int32) @@ -211,6 +214,9 @@ class SSIM(Cell): Outputs: Tensor, has the same dtype as img1. It is a 1-D tensor with shape N, where N is the batch num of img1. + Supported Platforms: + ``Ascend`` ``GPU`` + Examples: >>> net = nn.SSIM() >>> img1 = Tensor(np.random.random((1,3,16,16)), mindspore.float32) @@ -289,6 +295,9 @@ class MSSSIM(Cell): Outputs: Tensor, the value is in range [0, 1]. It is a 1-D tensor with shape N, where N is the batch num of img1. + Supported Platforms: + ``Ascend`` + Examples: >>> net = nn.MSSSIM(power_factors=(0.033, 0.033, 0.033)) >>> np.random.seed(0) @@ -380,6 +389,9 @@ class PSNR(Cell): Outputs: Tensor, with dtype mindspore.float32. It is a 1-D tensor with shape N, where N is the batch num of img1. + Supported Platforms: + ``Ascend`` ``GPU`` + Examples: >>> net = nn.PSNR() >>> img1 = Tensor(np.random.random((1,3,16,16))) @@ -450,6 +462,9 @@ class CentralCrop(Cell): Outputs: Tensor, 3-D or 4-D float tensor, according to the input. + Supported Platforms: + ``Ascend`` ``GPU`` ``CPU`` + Examples: >>> net = nn.CentralCrop(central_fraction=0.5) >>> image = Tensor(np.random.random((4, 3, 4, 4)), mindspore.float32) diff --git a/mindspore/nn/layer/lstm.py b/mindspore/nn/layer/lstm.py index b0d5a72b2a..f038009669 100755 --- a/mindspore/nn/layer/lstm.py +++ b/mindspore/nn/layer/lstm.py @@ -95,6 +95,9 @@ class LSTM(Cell): - **hx_n** (tuple) - A tuple of two Tensor (h_n, c_n) both of shape (num_directions * `num_layers`, batch_size, `hidden_size`). + Supported Platforms: + ``GPU`` + Examples: >>> net = nn.LSTM(10, 12, 2, has_bias=True, batch_first=True, bidirectional=False) >>> input = Tensor(np.ones([3, 5, 10]).astype(np.float32)) @@ -303,6 +306,9 @@ class LSTMCell(Cell): - **reserve** - reserved - **state** - reserved + Supported Platforms: + ``GPU`` ``CPU`` + Examples: >>> net = nn.LSTMCell(10, 12, has_bias=True, batch_first=True, bidirectional=False) >>> input = Tensor(np.ones([3, 5, 10]).astype(np.float32)) diff --git a/mindspore/nn/layer/math.py b/mindspore/nn/layer/math.py index f4a86e3e06..c11b943a89 100644 --- a/mindspore/nn/layer/math.py +++ b/mindspore/nn/layer/math.py @@ -60,6 +60,9 @@ class ReduceLogSumExp(Cell): - If axis is tuple(int), set as (2, 3), and keep_dims is False, the shape of output is :math:`(x_1, x_4, ..., x_R)`. + Supported Platforms: + ``Ascend`` ``GPU`` + Examples: >>> input_x = Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32)) >>> op = nn.ReduceLogSumExp(1, keep_dims=True) @@ -98,6 +101,9 @@ class Range(Cell): Outputs: Tensor, the dtype is int if the dtype of `start`, `limit` and `delta` all are int. Otherwise, dtype is float. + Supported Platforms: + ``Ascend`` + Examples: >>> net = nn.Range(1, 8, 2) >>> output = net() @@ -152,6 +158,9 @@ class LinSpace(Cell): Outputs: Tensor, With type same as `start`. The shape is 1-D with length of `num`. + Supported Platforms: + ``Ascend`` + Examples: >>> linspace = nn.LinSpace(1, 10, 5) >>> output = linspace() @@ -225,6 +234,9 @@ class LGamma(Cell): Outputs: Tensor, has the same shape and dtype as the `input_x`. + Supported Platforms: + ``Ascend`` + Examples: >>> input_x = Tensor(np.array([2, 3, 4]).astype(np.float32)) >>> op = nn.LGamma() @@ -758,6 +770,9 @@ class MatMul(Cell): Outputs: Tensor, the shape of the output tensor depends on the dimension of input tensors. + Supported Platforms: + ``Ascend`` ``GPU`` ``CPU`` + Examples: >>> net = nn.MatMul() >>> input_x1 = Tensor(np.ones(shape=[3, 2, 3]), mindspore.float32) @@ -830,6 +845,9 @@ class Moments(Cell): - **mean** (Tensor) - The mean of input x, with the same date type as input x. - **variance** (Tensor) - The variance of input x, with the same date type as input x. + Supported Platforms: + ``Ascend`` + Examples: >>> net = nn.Moments(axis=3, keep_dims=True) >>> input_x = Tensor(np.array([[[[1, 2, 3, 4], [3, 4, 5, 6]]]]), mindspore.float32) diff --git a/mindspore/nn/layer/normalization.py b/mindspore/nn/layer/normalization.py index 5dc7da7183..cc477bc23a 100644 --- a/mindspore/nn/layer/normalization.py +++ b/mindspore/nn/layer/normalization.py @@ -283,6 +283,9 @@ class BatchNorm1d(_BatchNorm): Outputs: Tensor, the normalized, scaled, offset tensor, of shape :math:`(N, C_{out})`. + Supported Platforms: + ``Ascend`` + Examples: >>> net = nn.BatchNorm1d(num_features=4) >>> np.random.seed(0) @@ -369,6 +372,9 @@ class BatchNorm2d(_BatchNorm): Outputs: Tensor, the normalized, scaled, offset tensor, of shape :math:`(N, C_{out}, H_{out}, W_{out})`. + Supported Platforms: + ``Ascend`` ``GPU`` ``CPU`` + Examples: >>> net = nn.BatchNorm2d(num_features=3) >>> np.random.seed(0) @@ -458,6 +464,9 @@ class GlobalBatchNorm(_BatchNorm): Outputs: Tensor, the normalized, scaled, offset tensor, of shape :math:`(N, C_{out}, H_{out}, W_{out})`. + Supported Platforms: + ``Ascend`` + Examples: >>> # This example should be run with multiple processes. Refer to the run_distribute_train.sh >>> import os @@ -557,6 +566,9 @@ class LayerNorm(Cell): Outputs: Tensor, the normalized and scaled offset tensor, has the same shape and data type as the `input_x`. + Supported Platforms: + ``Ascend`` ``GPU`` + Examples: >>> x = Tensor(np.ones([20, 5, 10, 10]), mindspore.float32) >>> shape1 = x.shape[1:] @@ -630,6 +642,9 @@ class GroupNorm(Cell): Outputs: Tensor, the normalized and scaled offset tensor, has the same shape and data type as the `input_x`. + Supported Platforms: + ``Ascend`` ``GPU`` + Examples: >>> goup_norm_op = nn.GroupNorm(2, 2) >>> x = Tensor(np.ones([1, 2, 4, 4], np.float32)) diff --git a/mindspore/nn/layer/pooling.py b/mindspore/nn/layer/pooling.py index 08828e34df..c28330e7de 100644 --- a/mindspore/nn/layer/pooling.py +++ b/mindspore/nn/layer/pooling.py @@ -104,6 +104,9 @@ class MaxPool2d(_PoolNd): Outputs: Tensor of shape :math:`(N, C_{out}, H_{out}, W_{out})`. + Supported Platforms: + ``Ascend`` ``GPU`` ``CPU`` + Examples: >>> pool = nn.MaxPool2d(kernel_size=3, stride=1) >>> x = Tensor(np.random.randint(0, 10, [1, 2, 4, 4]), mindspore.float32) @@ -171,6 +174,9 @@ class MaxPool1d(_PoolNd): Outputs: Tensor of shape :math:`(N, C, L_{out}))`. + Supported Platforms: + ``Ascend`` + Examples: >>> max_pool = nn.MaxPool1d(kernel_size=3, stride=1) >>> x = Tensor(np.random.randint(0, 10, [1, 2, 4]), mindspore.float32) @@ -257,6 +263,9 @@ class AvgPool2d(_PoolNd): Outputs: Tensor of shape :math:`(N, C_{out}, H_{out}, W_{out})`. + Supported Platforms: + ``Ascend`` ``GPU`` + Examples: >>> pool = nn.AvgPool2d(kernel_size=3, stride=1) >>> x = Tensor(np.random.randint(0, 10, [1, 2, 4, 4]), mindspore.float32) @@ -322,6 +331,9 @@ class AvgPool1d(_PoolNd): Outputs: Tensor of shape :math:`(N, C_{out}, L_{out})`. + Supported Platforms: + ``Ascend`` + Examples: >>> pool = nn.AvgPool1d(kernel_size=6, stride=1) >>> x = Tensor(np.random.randint(0, 10, [1, 3, 6]), mindspore.float32) diff --git a/mindspore/nn/layer/quant.py b/mindspore/nn/layer/quant.py index fead4d6ed9..4baaf38066 100644 --- a/mindspore/nn/layer/quant.py +++ b/mindspore/nn/layer/quant.py @@ -587,6 +587,9 @@ class Conv2dBnFoldQuant(Cell): Outputs: Tensor of shape :math:`(N, C_{out}, H_{out}, W_{out})`. + Supported Platforms: + ``Ascend`` ``GPU`` + Examples: >>> qconfig = compression.quant.create_quant_config() >>> conv2d_bnfold = nn.Conv2dBnFoldQuant(1, 6, kernel_size=(2, 2), stride=(1, 1), pad_mode="valid", @@ -772,6 +775,9 @@ class Conv2dBnWithoutFoldQuant(Cell): Outputs: Tensor of shape :math:`(N, C_{out}, H_{out}, W_{out})`. + Supported Platforms: + ``Ascend`` ``GPU`` + Examples: >>> qconfig = compression.quant.create_quant_config() >>> conv2d_no_bnfold = nn.Conv2dBnWithoutFoldQuant(1, 6, kernel_size=(2, 2), stride=(1, 1), pad_mode="valid", @@ -893,6 +899,9 @@ class Conv2dQuant(Cell): Outputs: Tensor of shape :math:`(N, C_{out}, H_{out}, W_{out})`. + Supported Platforms: + ``Ascend`` ``GPU`` + Examples: >>> qconfig = compression.quant.create_quant_config() >>> conv2d_quant = nn.Conv2dQuant(1, 6, kernel_size= (2, 2), stride=(1, 1), pad_mode="valid", @@ -994,6 +1003,9 @@ class DenseQuant(Cell): Outputs: Tensor of shape :math:`(N, C_{out}, H_{out}, W_{out})`. + Supported Platforms: + ``Ascend`` ``GPU`` + Examples: >>> qconfig = compression.quant.create_quant_config() >>> dense_quant = nn.DenseQuant(3, 6, quant_config=qconfig) @@ -1100,6 +1112,9 @@ class ActQuant(_QuantActivation): Outputs: Tensor, with the same type and shape as the `input`. + Supported Platforms: + ``Ascend`` ``GPU`` + Examples: >>> qconfig = compression.quant.create_quant_config() >>> act_quant = nn.ActQuant(nn.ReLU(), quant_config=qconfig) @@ -1162,6 +1177,9 @@ class TensorAddQuant(Cell): Outputs: Tensor, with the same type and shape as the `input_x1`. + Supported Platforms: + ``Ascend`` ``GPU`` + Examples: >>> qconfig = compression.quant.create_quant_config() >>> add_quant = nn.TensorAddQuant(quant_config=qconfig) @@ -1210,6 +1228,9 @@ class MulQuant(Cell): Outputs: Tensor, with the same type and shape as the `input_x1`. + Supported Platforms: + ``Ascend`` ``GPU`` + Examples: >>> qconfig = compression.quant.create_quant_config() >>> mul_quant = nn.MulQuant(quant_config=qconfig) diff --git a/mindspore/nn/loss/loss.py b/mindspore/nn/loss/loss.py index 36fb500ccd..25d61e8454 100644 --- a/mindspore/nn/loss/loss.py +++ b/mindspore/nn/loss/loss.py @@ -91,6 +91,9 @@ class L1Loss(_Loss): Outputs: Tensor, loss float tensor. + Supported Platforms: + ``Ascend`` ``GPU`` + Examples: >>> loss = nn.L1Loss() >>> input_data = Tensor(np.array([1, 2, 3]), mindspore.float32) @@ -133,6 +136,9 @@ class MSELoss(_Loss): Outputs: Tensor, weighted loss float tensor. + Supported Platforms: + ``Ascend`` ``GPU`` + Examples: >>> loss = nn.MSELoss() >>> input_data = Tensor(np.array([1, 2, 3]), mindspore.float32) @@ -180,6 +186,9 @@ class SmoothL1Loss(_Loss): Outputs: Tensor, loss float tensor. + Supported Platforms: + ``Ascend`` ``GPU`` ``CPU`` + Examples: >>> loss = nn.SmoothL1Loss() >>> input_data = Tensor(np.array([1, 2, 3]), mindspore.float32) @@ -234,6 +243,9 @@ class SoftmaxCrossEntropyWithLogits(_Loss): Tensor, a tensor of the same shape as logits with the component-wise logistic losses. + Supported Platforms: + ``Ascend`` ``GPU`` ``CPU`` + Examples: >>> loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True) >>> logits = Tensor(np.random.randint(0, 9, [1, 10]), mindspore.float32) @@ -511,6 +523,9 @@ class BCELoss(_Loss): Tensor or Scalar, if `reduction` is 'none', then output is a tensor and has the same shape as `inputs`. Otherwise, the output is a scalar. + Supported Platforms: + ``Ascend`` ``GPU`` + Examples: >>> weight = Tensor(np.array([[1.0, 2.0, 3.0], [4.0, 3.3, 2.2]]), mindspore.float32) >>> loss = nn.BCELoss(weight=weight, reduction='mean') @@ -570,6 +585,9 @@ class CosineEmbeddingLoss(_Loss): - **loss** (Tensor) - If `reduction` is "none", its shape is the same as `y`'s shape, otherwise a scalar value will be returned. + Supported Platforms: + ``Ascend`` ``GPU`` + Examples: >>> x1 = Tensor(np.array([[0.3, 0.8], [0.4, 0.3]]), mindspore.float32) >>> x2 = Tensor(np.array([[0.4, 1.2], [-0.4, -0.9]]), mindspore.float32) diff --git a/mindspore/nn/optim/adam.py b/mindspore/nn/optim/adam.py index bd1cd16319..d5d2d2d4e0 100755 --- a/mindspore/nn/optim/adam.py +++ b/mindspore/nn/optim/adam.py @@ -272,6 +272,9 @@ class Adam(Optimizer): Outputs: Tensor[bool], the value is True. + Supported Platforms: + ``Ascend`` + Examples: >>> net = Net() >>> #1) All parameters use the same learning rate and weight decay @@ -407,6 +410,9 @@ class AdamWeightDecay(Optimizer): Outputs: tuple[bool], all elements are True. + Supported Platforms: + ``Ascend`` ``GPU`` + Examples: >>> net = Net() >>> #1) All parameters use the same learning rate and weight decay @@ -535,6 +541,9 @@ class AdamOffload(Optimizer): Outputs: Tensor[bool], the value is True. + Supported Platforms: + ``Ascend`` ``GPU`` ``CPU`` + Examples: >>> net = Net() >>> #1) All parameters use the same learning rate and weight decay diff --git a/mindspore/nn/optim/ftrl.py b/mindspore/nn/optim/ftrl.py index 013dcea198..5e9ebd1934 100644 --- a/mindspore/nn/optim/ftrl.py +++ b/mindspore/nn/optim/ftrl.py @@ -126,6 +126,9 @@ class FTRL(Optimizer): Outputs: tuple[Parameter], the updated parameters, the shape is the same as `params`. + Supported Platforms: + ``Ascend`` ``GPU`` + Examples: >>> net = Net() >>> #1) All parameters use the same learning rate and weight decay diff --git a/mindspore/nn/optim/lamb.py b/mindspore/nn/optim/lamb.py index b283125f81..99f4b17978 100755 --- a/mindspore/nn/optim/lamb.py +++ b/mindspore/nn/optim/lamb.py @@ -235,6 +235,9 @@ class Lamb(Optimizer): Outputs: tuple[bool], all elements are True. + Supported Platforms: + ``Ascend`` ``GPU`` + Examples: >>> net = Net() >>> #1) All parameters use the same learning rate and weight decay diff --git a/mindspore/nn/optim/lars.py b/mindspore/nn/optim/lars.py index 65187c4cc9..4f2dfaf2c2 100755 --- a/mindspore/nn/optim/lars.py +++ b/mindspore/nn/optim/lars.py @@ -68,6 +68,9 @@ class LARS(Optimizer): Outputs: Union[Tensor[bool], tuple[Parameter]], it depends on the output of `optimizer`. + Supported Platforms: + ``Ascend`` + Examples: >>> net = Net() >>> loss = nn.SoftmaxCrossEntropyWithLogits() diff --git a/mindspore/nn/optim/lazyadam.py b/mindspore/nn/optim/lazyadam.py index 92dc0ecd53..7f755b1392 100644 --- a/mindspore/nn/optim/lazyadam.py +++ b/mindspore/nn/optim/lazyadam.py @@ -183,6 +183,9 @@ class LazyAdam(Optimizer): Outputs: Tensor[bool], the value is True. + Supported Platforms: + ``Ascend`` + Examples: >>> net = Net() >>> #1) All parameters use the same learning rate and weight decay diff --git a/mindspore/nn/optim/momentum.py b/mindspore/nn/optim/momentum.py index 390324414c..2e74f03264 100755 --- a/mindspore/nn/optim/momentum.py +++ b/mindspore/nn/optim/momentum.py @@ -104,6 +104,9 @@ class Momentum(Optimizer): Raises: ValueError: If the momentum is less than 0.0. + Supported Platforms: + ``Ascend`` ``GPU`` ``CPU`` + Examples: >>> net = Net() >>> #1) All parameters use the same learning rate and weight decay diff --git a/mindspore/nn/optim/optimizer.py b/mindspore/nn/optim/optimizer.py index 3835c30bd3..e4322a4072 100755 --- a/mindspore/nn/optim/optimizer.py +++ b/mindspore/nn/optim/optimizer.py @@ -83,6 +83,9 @@ class Optimizer(Cell): Raises: ValueError: If the learning_rate is a Tensor, but the dimension of tensor is greater than 1. TypeError: If the learning_rate is not any of the three types: float, Tensor, nor Iterable. + + Supported Platforms: + ``Ascend`` ``GPU`` """ def __init__(self, learning_rate, parameters, weight_decay=0.0, loss_scale=1.0): diff --git a/mindspore/nn/optim/proximal_ada_grad.py b/mindspore/nn/optim/proximal_ada_grad.py index 923c6feb73..bf458fbb65 100644 --- a/mindspore/nn/optim/proximal_ada_grad.py +++ b/mindspore/nn/optim/proximal_ada_grad.py @@ -107,6 +107,9 @@ class ProximalAdagrad(Optimizer): Outputs: Tensor[bool], the value is True. + Supported Platforms: + ``Ascend`` + Examples: >>> net = Net() >>> #1) All parameters use the same learning rate and weight decay diff --git a/mindspore/nn/optim/rmsprop.py b/mindspore/nn/optim/rmsprop.py index 658a14443e..5d364cd9eb 100644 --- a/mindspore/nn/optim/rmsprop.py +++ b/mindspore/nn/optim/rmsprop.py @@ -130,6 +130,9 @@ class RMSProp(Optimizer): Outputs: Tensor[bool], the value is True. + Supported Platforms: + ``Ascend`` ``GPU`` + Examples: >>> net = Net() >>> #1) All parameters use the same learning rate and weight decay diff --git a/mindspore/nn/optim/sgd.py b/mindspore/nn/optim/sgd.py index d3d438b334..f916638b56 100755 --- a/mindspore/nn/optim/sgd.py +++ b/mindspore/nn/optim/sgd.py @@ -103,6 +103,9 @@ class SGD(Optimizer): Raises: ValueError: If the momentum, dampening or weight_decay value is less than 0.0. + Supported Platforms: + ``Ascend`` ``GPU`` + Examples: >>> net = Net() >>> #1) All parameters use the same learning rate and weight decay diff --git a/mindspore/nn/wrap/cell_wrapper.py b/mindspore/nn/wrap/cell_wrapper.py index c795ba2b05..37b730eb90 100644 --- a/mindspore/nn/wrap/cell_wrapper.py +++ b/mindspore/nn/wrap/cell_wrapper.py @@ -78,6 +78,9 @@ class WithLossCell(Cell): Outputs: Tensor, a scalar tensor with shape :math:`()`. + Supported Platforms: + ``Ascend`` ``GPU`` + Examples: >>> net = Net() >>> loss_fn = nn.SoftmaxCrossEntropyWithLogits(sparse=False) @@ -134,6 +137,9 @@ class WithGradCell(Cell): Outputs: list, a list of Tensors with identical shapes as trainable weights. + Supported Platforms: + ``Ascend`` ``GPU`` + Examples: >>> # For a defined network Net without loss function >>> net = Net() @@ -187,6 +193,9 @@ class TrainOneStepCell(Cell): Outputs: Tensor, a scalar Tensor with shape :math:`()`. + Supported Platforms: + ``Ascend`` ``GPU`` + Examples: >>> net = Net() >>> loss_fn = nn.SoftmaxCrossEntropyWithLogits() @@ -249,6 +258,9 @@ class GetNextSingleOp(Cell): For detailed information, refer to `ops.operations.GetNext`. + Supported Platforms: + ``GPU`` + Examples: >>> # Refer to dataset_helper.py for detail usage. >>> data_set = get_dataset() @@ -346,6 +358,9 @@ class WithEvalCell(Cell): Tuple, containing a scalar loss Tensor, a network output Tensor of shape :math:`(N, \ldots)` and a label Tensor of shape :math:`(N, \ldots)`. + Supported Platforms: + ``Ascend`` ``GPU`` + Examples: >>> # For a defined network Net without loss function >>> net = Net() @@ -380,6 +395,9 @@ class ParameterUpdate(Cell): Raises: KeyError: If parameter with the specified name does not exist. + Supported Platforms: + ``Ascend`` + Examples: >>> network = Net() >>> param = network.parameters_dict()['learning_rate'] diff --git a/mindspore/nn/wrap/grad_reducer.py b/mindspore/nn/wrap/grad_reducer.py index a19ad30c5f..b3cd4c1e4c 100644 --- a/mindspore/nn/wrap/grad_reducer.py +++ b/mindspore/nn/wrap/grad_reducer.py @@ -245,6 +245,9 @@ class DistributedGradReducer(Cell): Raises: ValueError: If degree is not a int or less than 0. + Supported Platforms: + ``Ascend`` + Examples: >>> # This example should be run with multiple processes. Refer to the run_distribute_train.sh >>> import os diff --git a/mindspore/nn/wrap/loss_scale.py b/mindspore/nn/wrap/loss_scale.py index 9a53602c85..cb1f0b4844 100644 --- a/mindspore/nn/wrap/loss_scale.py +++ b/mindspore/nn/wrap/loss_scale.py @@ -75,6 +75,9 @@ class DynamicLossScaleUpdateCell(Cell): Outputs: Tensor, a scalar Tensor with shape :math:`()`. + Supported Platforms: + ``Ascend`` ``GPU`` + Examples: >>> import numpy as np >>> from mindspore import Tensor, Parameter, nn @@ -155,6 +158,9 @@ class FixedLossScaleUpdateCell(Cell): Args: loss_scale_value (float): Initializes loss scale. + Supported Platforms: + ``Ascend`` ``GPU`` + Examples: >>> import numpy as np >>> from mindspore import Tensor, Parameter, nn @@ -220,6 +226,9 @@ class TrainOneStepWithLossScaleCell(TrainOneStepCell): - **overflow** (Tensor) - Tensor with shape :math:`()`, type is bool. - **loss scaling value** (Tensor) - Tensor with shape :math:`()` + Supported Platforms: + ``Ascend`` ``GPU`` + Examples: >>> import numpy as np >>> from mindspore import Tensor, Parameter, nn diff --git a/mindspore/ops/operations/array_ops.py b/mindspore/ops/operations/array_ops.py index bb7a591915..085b3fcdaa 100644 --- a/mindspore/ops/operations/array_ops.py +++ b/mindspore/ops/operations/array_ops.py @@ -1135,6 +1135,9 @@ class Ones(PrimitiveWithInfer): Outputs: Tensor, has the same type and shape as input shape value. + Supported Platforms: + ``Ascend`` ``GPU`` + Examples: >>> from mindspore.ops import operations as P >>> ones = P.Ones() @@ -1185,6 +1188,9 @@ class Zeros(PrimitiveWithInfer): Outputs: Tensor, has the same type and shape as input shape value. + Supported Platforms: + ``Ascend`` ``GPU`` + Examples: >>> from mindspore.ops import operations as P >>> zeros = P.Zeros()