diff --git a/model_zoo/official/cv/yolov3_darknet53/README.md b/model_zoo/official/cv/yolov3_darknet53/README.md index 5d345eb670..89d46291b0 100644 --- a/model_zoo/official/cv/yolov3_darknet53/README.md +++ b/model_zoo/official/cv/yolov3_darknet53/README.md @@ -302,38 +302,38 @@ The above python command will run in the background. You can view the results th ### Evaluation Performance -| Parameters | YOLO | -| -------------------------- | ----------------------------------------------------------- | -| Model Version | YOLOv3 | -| Resource | Ascend 910; CPU 2.60GHz, 192cores; Memory, 755G | -| uploaded Date | 06/31/2020 (month/day/year) | -| MindSpore Version | 0.5.0-alpha | -| Dataset | COCO2014 | -| Training Parameters | epoch=320, batch_size=32, lr=0.001, momentum=0.9 | -| Optimizer | Momentum | -| Loss Function | Sigmoid Cross Entropy with logits | -| outputs | boxes and label | -| Loss | 34 | -| Speed | 1pc: 350 ms/step; | -| Total time | 8pc: 25 hours | -| Parameters (M) | 62.1 | -| Checkpoint for Fine tuning | 474M (.ckpt file) | -| Scripts | https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/yolov3_darknet53 | +| Parameters | YOLO |YOLO | +| -------------------------- | ----------------------------------------------------------- |----------------------------------------------------------- | +| Model Version | YOLOv3 |YOLOv3 | +| Resource | Ascend 910; CPU 2.60GHz, 192cores; Memory, 755G | NV SMX2 V100-16G; CPU 2.10GHz, 96cores; Memory, 251G | +| uploaded Date | 06/31/2020 (month/day/year) | 09/02/2020 (month/day/year) | +| MindSpore Version | 0.5.0-alpha | 0.7.0 | +| Dataset | COCO2014 | COCO2014 | +| Training Parameters | epoch=320, batch_size=32, lr=0.001, momentum=0.9 | epoch=320, batch_size=32, lr=0.001, momentum=0.9 | +| Optimizer | Momentum | Momentum | +| Loss Function | Sigmoid Cross Entropy with logits | Sigmoid Cross Entropy with logits | +| outputs | boxes and label | boxes and label | +| Loss | 34 | 34 | +| Speed | 1pc: 350 ms/step; | 1pc: 600 ms/step; | +| Total time | 8pc: 25 hours | 8pc: 18 hours(shape=416) | +| Parameters (M) | 62.1 | 62.1 | +| Checkpoint for Fine tuning | 474M (.ckpt file) | 474M (.ckpt file) | +| Scripts | https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/yolov3_darknet53 | https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/yolov3_darknet53 | ### Inference Performance -| Parameters | YOLO | -| ------------------- | --------------------------- | -| Model Version | YOLOv3 | -| Resource | Ascend 910 | -| Uploaded Date | 06/31/2020 (month/day/year) | -| MindSpore Version | 0.5.0-alpha | -| Dataset | COCO2014, 40,504 images | -| batch_size | 1 | -| outputs | mAP | -| Accuracy | 8pcs: 31.1% | -| Model for inference | 474M (.ckpt file) | +| Parameters | YOLO |YOLO | +| ------------------- | --------------------------- |------------------------------| +| Model Version | YOLOv3 | YOLOv3 | +| Resource | Ascend 910 | NV SMX2 V100-16G | +| Uploaded Date | 06/31/2020 (month/day/year) | 08/20/2020 (month/day/year) | +| MindSpore Version | 0.5.0-alpha | 0.7.0 | +| Dataset | COCO2014, 40,504 images | COCO2014, 40,504 images | +| batch_size | 1 | 1 | +| outputs | mAP | mAP | +| Accuracy | 8pcs: 31.1% | 8pcs: 29.7%~30.3% (shape=416)| +| Model for inference | 474M (.ckpt file) | 474M (.ckpt file) | # [Description of Random Situation](#contents) diff --git a/model_zoo/official/cv/yolov3_darknet53/train.py b/model_zoo/official/cv/yolov3_darknet53/train.py index 877cededeb..c95beb05cd 100644 --- a/model_zoo/official/cv/yolov3_darknet53/train.py +++ b/model_zoo/official/cv/yolov3_darknet53/train.py @@ -304,14 +304,14 @@ def train(): input_shape = images.shape[2:4] args.logger.info('iter[{}], shape{}'.format(i, input_shape[0])) - images = Tensor(images) - - batch_y_true_0 = Tensor(data['bbox1']) - batch_y_true_1 = Tensor(data['bbox2']) - batch_y_true_2 = Tensor(data['bbox3']) - batch_gt_box0 = Tensor(data['gt_box1']) - batch_gt_box1 = Tensor(data['gt_box2']) - batch_gt_box2 = Tensor(data['gt_box3']) + images = Tensor.from_numpy(images) + + batch_y_true_0 = Tensor.from_numpy(data['bbox1']) + batch_y_true_1 = Tensor.from_numpy(data['bbox2']) + batch_y_true_2 = Tensor.from_numpy(data['bbox3']) + batch_gt_box0 = Tensor.from_numpy(data['gt_box1']) + batch_gt_box1 = Tensor.from_numpy(data['gt_box2']) + batch_gt_box2 = Tensor.from_numpy(data['gt_box3']) input_shape = Tensor(tuple(input_shape[::-1]), ms.float32) loss = network(images, batch_y_true_0, batch_y_true_1, batch_y_true_2, batch_gt_box0, batch_gt_box1,