diff --git a/model_zoo/official/nlp/bert/mindspore_hub_conf.py b/model_zoo/official/nlp/bert/mindspore_hub_conf.py index ea4b63ac20..d4f7eb8820 100644 --- a/model_zoo/official/nlp/bert/mindspore_hub_conf.py +++ b/model_zoo/official/nlp/bert/mindspore_hub_conf.py @@ -59,11 +59,11 @@ def create_network(name, *args, **kwargs): if name == 'bert_base': if "seq_length" in kwargs: bert_net_cfg_base.seq_length = kwargs["seq_length"] - is_training = kwargs.get("is_training", default=False) + is_training = kwargs.get("is_training", False) return BertModel(bert_net_cfg_base, is_training, *args) if name == 'bert_nezha': if "seq_length" in kwargs: bert_net_cfg_nezha.seq_length = kwargs["seq_length"] - is_training = kwargs.get("is_training", default=False) + is_training = kwargs.get("is_training", False) return BertModel(bert_net_cfg_nezha, is_training, *args) raise NotImplementedError(f"{name} is not implemented in the repo") diff --git a/model_zoo/official/nlp/tinybert/README.md b/model_zoo/official/nlp/tinybert/README.md index a4b08f8aed..3d93856d93 100644 --- a/model_zoo/official/nlp/tinybert/README.md +++ b/model_zoo/official/nlp/tinybert/README.md @@ -207,6 +207,7 @@ options: `gd_config.py` and `td_config.py` contain parameters of BERT model and options for optimizer and lossscale. ### Options: ``` +batch_size batch size of input dataset: N, default is 16 Parameters for lossscale: loss_scale_value initial value of loss scale: N, default is 2^8 scale_factor factor used to update loss scale: N, default is 2 @@ -223,7 +224,6 @@ Parameters for optimizer: ### Parameters: ``` Parameters for bert network: - batch_size batch size of input dataset: N, default is 16 seq_length length of input sequence: N, default is 128 vocab_size size of each embedding vector: N, must be consistant with the dataset you use. Default is 30522 hidden_size size of bert encoder layers: N @@ -239,8 +239,6 @@ Parameters for bert network: type_vocab_size size of token type vocab: N, default is 2 initializer_range initialization value of TruncatedNormal: Q, default is 0.02 use_relative_positions use relative positions or not: True | False, default is False - input_mask_from_dataset use the input mask loaded form dataset or not: True | False, default is True - token_type_ids_from_dataset use the token type ids loaded from dataset or not: True | False, default is True dtype data type of input: mstype.float16 | mstype.float32, default is mstype.float32 compute_type compute type in BertTransformer: mstype.float16 | mstype.float32, default is mstype.float16 ``` diff --git a/model_zoo/official/nlp/tinybert/mindspore_hub_conf.py b/model_zoo/official/nlp/tinybert/mindspore_hub_conf.py new file mode 100644 index 0000000000..5c0bc3cb44 --- /dev/null +++ b/model_zoo/official/nlp/tinybert/mindspore_hub_conf.py @@ -0,0 +1,49 @@ +# Copyright 2020 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +''' +Bert hub interface for bert base and bert nezha +''' +from src.tinybert_model import TinyBertModel +from src.tinybert_model import BertConfig +import mindspore.common.dtype as mstype + +tinybert_student_net_cfg = BertConfig( + seq_length=128, + vocab_size=30522, + hidden_size=384, + num_hidden_layers=4, + num_attention_heads=12, + intermediate_size=1536, + hidden_act="gelu", + hidden_dropout_prob=0.1, + attention_probs_dropout_prob=0.1, + max_position_embeddings=512, + type_vocab_size=2, + initializer_range=0.02, + use_relative_positions=False, + dtype=mstype.float32, + compute_type=mstype.float16 +) + +def create_network(name, *args, **kwargs): + ''' + Create tinybert network. + ''' + if name == "tinybert": + if "seq_length" in kwargs: + tinybert_student_net_cfg.seq_length = kwargs["seq_length"] + is_training = kwargs.get("is_training", False) + return TinyBertModel(tinybert_student_net_cfg, is_training, *args) + raise NotImplementedError(f"{name} is not implemented in the repo") diff --git a/model_zoo/official/nlp/tinybert/run_general_distill.py b/model_zoo/official/nlp/tinybert/run_general_distill.py index cf7d876ae8..1c10313dde 100644 --- a/model_zoo/official/nlp/tinybert/run_general_distill.py +++ b/model_zoo/official/nlp/tinybert/run_general_distill.py @@ -110,7 +110,7 @@ def run_general_distill(): dataset_type = DataType.MINDRECORD else: raise Exception("dataset format is not supported yet") - dataset = create_tinybert_dataset('gd', bert_teacher_net_cfg.batch_size, device_num, rank, + dataset = create_tinybert_dataset('gd', common_cfg.batch_size, device_num, rank, args_opt.do_shuffle, args_opt.data_dir, args_opt.schema_dir, data_type=dataset_type) dataset_size = dataset.get_dataset_size() diff --git a/model_zoo/official/nlp/tinybert/run_task_distill.py b/model_zoo/official/nlp/tinybert/run_task_distill.py index 5ed4730d6f..4bed99512f 100644 --- a/model_zoo/official/nlp/tinybert/run_task_distill.py +++ b/model_zoo/official/nlp/tinybert/run_task_distill.py @@ -29,7 +29,7 @@ from mindspore import log as logger from src.dataset import create_tinybert_dataset, DataType from src.utils import LossCallBack, ModelSaveCkpt, EvalCallBack, BertLearningRate from src.assessment_method import Accuracy -from src.td_config import phase1_cfg, phase2_cfg, td_teacher_net_cfg, td_student_net_cfg +from src.td_config import phase1_cfg, phase2_cfg, eval_cfg, td_teacher_net_cfg, td_student_net_cfg from src.tinybert_for_gd_td import BertEvaluationWithLossScaleCell, BertNetworkWithLoss_td, BertEvaluationCell from src.tinybert_model import BertModelCLS @@ -130,7 +130,7 @@ def run_predistill(): dataset_type = DataType.MINDRECORD else: raise Exception("dataset format is not supported yet") - dataset = create_tinybert_dataset('td', td_teacher_net_cfg.batch_size, + dataset = create_tinybert_dataset('td', cfg.batch_size, device_num, rank, args_opt.do_shuffle, args_opt.train_data_dir, args_opt.schema_dir, data_type=dataset_type) @@ -194,7 +194,7 @@ def run_task_distill(ckpt_file): rank = 0 device_num = 1 - train_dataset = create_tinybert_dataset('td', td_teacher_net_cfg.batch_size, + train_dataset = create_tinybert_dataset('td', cfg.batch_size, device_num, rank, args_opt.do_shuffle, args_opt.train_data_dir, args_opt.schema_dir) @@ -224,7 +224,7 @@ def run_task_distill(ckpt_file): optimizer = AdamWeightDecay(group_params, learning_rate=lr_schedule, eps=optimizer_cfg.AdamWeightDecay.eps) - eval_dataset = create_tinybert_dataset('td', td_teacher_net_cfg.batch_size, + eval_dataset = create_tinybert_dataset('td', eval_cfg.batch_size, device_num, rank, args_opt.do_shuffle, args_opt.eval_data_dir, args_opt.schema_dir) print('td2 eval dataset size: ', eval_dataset.get_dataset_size()) @@ -269,7 +269,7 @@ def do_eval_standalone(): load_param_into_net(eval_model, new_param_dict) eval_model.set_train(False) - eval_dataset = create_tinybert_dataset('td', batch_size=td_student_net_cfg.batch_size, + eval_dataset = create_tinybert_dataset('td', batch_size=eval_cfg.batch_size, device_num=1, rank=0, do_shuffle="false", data_dir=args_opt.eval_data_dir, schema_dir=args_opt.schema_dir) diff --git a/model_zoo/official/nlp/tinybert/src/gd_config.py b/model_zoo/official/nlp/tinybert/src/gd_config.py index 57a35af69b..a49630d6fe 100644 --- a/model_zoo/official/nlp/tinybert/src/gd_config.py +++ b/model_zoo/official/nlp/tinybert/src/gd_config.py @@ -20,6 +20,7 @@ from easydict import EasyDict as edict from .tinybert_model import BertConfig common_cfg = edict({ + 'batch_size': 32, 'loss_scale_value': 2 ** 16, 'scale_factor': 2, 'scale_window': 1000, @@ -38,7 +39,6 @@ teacher network: The BERT-base network. student network: The network which is inherited from teacher network. ''' bert_teacher_net_cfg = BertConfig( - batch_size=32, seq_length=128, vocab_size=30522, hidden_size=768, @@ -52,13 +52,10 @@ bert_teacher_net_cfg = BertConfig( type_vocab_size=2, initializer_range=0.02, use_relative_positions=False, - input_mask_from_dataset=True, - token_type_ids_from_dataset=True, dtype=mstype.float32, compute_type=mstype.float16 ) bert_student_net_cfg = BertConfig( - batch_size=32, seq_length=128, vocab_size=30522, hidden_size=384, @@ -72,8 +69,6 @@ bert_student_net_cfg = BertConfig( type_vocab_size=2, initializer_range=0.02, use_relative_positions=False, - input_mask_from_dataset=True, - token_type_ids_from_dataset=True, dtype=mstype.float32, compute_type=mstype.float16 ) diff --git a/model_zoo/official/nlp/tinybert/src/td_config.py b/model_zoo/official/nlp/tinybert/src/td_config.py index 54234b543e..ec4df5af08 100644 --- a/model_zoo/official/nlp/tinybert/src/td_config.py +++ b/model_zoo/official/nlp/tinybert/src/td_config.py @@ -20,6 +20,7 @@ from easydict import EasyDict as edict from .tinybert_model import BertConfig phase1_cfg = edict({ + 'batch_size': 32, 'loss_scale_value': 2 ** 8, 'scale_factor': 2, 'scale_window': 50, @@ -36,6 +37,7 @@ phase1_cfg = edict({ }) phase2_cfg = edict({ + 'batch_size': 32, 'loss_scale_value': 2 ** 16, 'scale_factor': 2, 'scale_window': 50, @@ -51,13 +53,16 @@ phase2_cfg = edict({ }), }) +eval_cfg = edict({ + 'batch_size': 32, +}) + ''' Including two kinds of network: \ teacher network: The BERT-base network with finetune. student network: The model which is producted by GD phase. ''' td_teacher_net_cfg = BertConfig( - batch_size=32, seq_length=128, vocab_size=30522, hidden_size=768, @@ -71,13 +76,10 @@ td_teacher_net_cfg = BertConfig( type_vocab_size=2, initializer_range=0.02, use_relative_positions=False, - input_mask_from_dataset=True, - token_type_ids_from_dataset=True, dtype=mstype.float32, compute_type=mstype.float16 ) td_student_net_cfg = BertConfig( - batch_size=32, seq_length=128, vocab_size=30522, hidden_size=384, @@ -91,8 +93,6 @@ td_student_net_cfg = BertConfig( type_vocab_size=2, initializer_range=0.02, use_relative_positions=False, - input_mask_from_dataset=True, - token_type_ids_from_dataset=True, dtype=mstype.float32, compute_type=mstype.float16 ) diff --git a/model_zoo/official/nlp/tinybert/src/tinybert_model.py b/model_zoo/official/nlp/tinybert/src/tinybert_model.py index eaaf00fb54..5e8dc8436b 100644 --- a/model_zoo/official/nlp/tinybert/src/tinybert_model.py +++ b/model_zoo/official/nlp/tinybert/src/tinybert_model.py @@ -32,7 +32,6 @@ class BertConfig: Configuration for `BertModel`. Args: - batch_size (int): Batch size of input dataset. seq_length (int): Length of input sequence. Default: 128. vocab_size (int): The shape of each embedding vector. Default: 32000. hidden_size (int): Size of the bert encoder layers. Default: 768. @@ -52,15 +51,10 @@ class BertConfig: type_vocab_size (int): Size of token type vocab. Default: 16. initializer_range (float): Initialization value of TruncatedNormal. Default: 0.02. use_relative_positions (bool): Specifies whether to use relative positions. Default: False. - input_mask_from_dataset (bool): Specifies whether to use the input mask that loaded from - dataset. Default: True. - token_type_ids_from_dataset (bool): Specifies whether to use the token type ids that loaded - from dataset. Default: True. dtype (:class:`mindspore.dtype`): Data type of the input. Default: mstype.float32. compute_type (:class:`mindspore.dtype`): Compute type in BertTransformer. Default: mstype.float32. """ def __init__(self, - batch_size, seq_length=128, vocab_size=32000, hidden_size=768, @@ -74,11 +68,8 @@ class BertConfig: type_vocab_size=16, initializer_range=0.02, use_relative_positions=False, - input_mask_from_dataset=True, - token_type_ids_from_dataset=True, dtype=mstype.float32, compute_type=mstype.float32): - self.batch_size = batch_size self.seq_length = seq_length self.vocab_size = vocab_size self.hidden_size = hidden_size @@ -91,8 +82,6 @@ class BertConfig: self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range - self.input_mask_from_dataset = input_mask_from_dataset - self.token_type_ids_from_dataset = token_type_ids_from_dataset self.use_relative_positions = use_relative_positions self.dtype = dtype self.compute_type = compute_type @@ -390,7 +379,6 @@ class BertAttention(nn.Cell): Apply multi-headed attention from "from_tensor" to "to_tensor". Args: - batch_size (int): Batch size of input datasets. from_tensor_width (int): Size of last dim of from_tensor. to_tensor_width (int): Size of last dim of to_tensor. from_seq_length (int): Length of from_tensor sequence. @@ -411,7 +399,6 @@ class BertAttention(nn.Cell): compute_type (:class:`mindspore.dtype`): Compute type in BertAttention. Default: mstype.float32. """ def __init__(self, - batch_size, from_tensor_width, to_tensor_width, from_seq_length, @@ -429,7 +416,6 @@ class BertAttention(nn.Cell): use_relative_positions=False, compute_type=mstype.float32): super(BertAttention, self).__init__() - self.batch_size = batch_size self.from_seq_length = from_seq_length self.to_seq_length = to_seq_length self.num_attention_heads = num_attention_heads @@ -454,9 +440,8 @@ class BertAttention(nn.Cell): units, activation=value_act, weight_init=weight).to_float(compute_type) - self.shape_from = (batch_size, from_seq_length, num_attention_heads, size_per_head) - self.shape_to = ( - batch_size, to_seq_length, num_attention_heads, size_per_head) + self.shape_from = (-1, from_seq_length, num_attention_heads, size_per_head) + self.shape_to = (-1, to_seq_length, num_attention_heads, size_per_head) self.matmul_trans_b = P.BatchMatMul(transpose_b=True) self.multiply = P.Mul() self.transpose = P.Transpose() @@ -464,7 +449,6 @@ class BertAttention(nn.Cell): self.trans_shape_relative = (2, 0, 1, 3) self.trans_shape_position = (1, 2, 0, 3) self.multiply_data = Tensor([-10000.0,], dtype=compute_type) - self.batch_num = batch_size * num_attention_heads self.matmul = P.BatchMatMul() self.softmax = nn.Softmax() self.dropout = nn.Dropout(1 - attention_probs_dropout_prob) @@ -475,9 +459,9 @@ class BertAttention(nn.Cell): self.cast = P.Cast() self.get_dtype = P.DType() if do_return_2d_tensor: - self.shape_return = (batch_size * from_seq_length, num_attention_heads * size_per_head) + self.shape_return = (-1, num_attention_heads * size_per_head) else: - self.shape_return = (batch_size, from_seq_length, num_attention_heads * size_per_head) + self.shape_return = (-1, from_seq_length, num_attention_heads * size_per_head) self.cast_compute_type = SaturateCast(dst_type=compute_type) if self.use_relative_positions: self._generate_relative_positions_embeddings = \ @@ -510,7 +494,7 @@ class BertAttention(nn.Cell): # query_layer_r is [F, B * N, H] query_layer_r = self.reshape(query_layer_t, (self.from_seq_length, - self.batch_num, + -1, self.size_per_head)) # key_position_scores is [F, B * N, F|T] key_position_scores = self.matmul_trans_b(query_layer_r, @@ -518,7 +502,7 @@ class BertAttention(nn.Cell): # key_position_scores_r is [F, B, N, F|T] key_position_scores_r = self.reshape(key_position_scores, (self.from_seq_length, - self.batch_size, + -1, self.num_attention_heads, self.from_seq_length)) # key_position_scores_r_t is [B, N, F, F|T] @@ -548,7 +532,7 @@ class BertAttention(nn.Cell): attention_probs_r = self.reshape( attention_probs_t, (self.from_seq_length, - self.batch_num, + -1, self.to_seq_length)) # value_position_scores is [F, B * N, H] value_position_scores = self.matmul(attention_probs_r, @@ -556,7 +540,7 @@ class BertAttention(nn.Cell): # value_position_scores_r is [F, B, N, H] value_position_scores_r = self.reshape(value_position_scores, (self.from_seq_length, - self.batch_size, + -1, self.num_attention_heads, self.size_per_head)) # value_position_scores_r_t is [B, N, F, H] @@ -572,7 +556,6 @@ class BertSelfAttention(nn.Cell): Apply self-attention. Args: - batch_size (int): Batch size of input dataset. seq_length (int): Length of input sequence. hidden_size (int): Size of the bert encoder layers. num_attention_heads (int): Number of attention heads. Default: 12. @@ -585,7 +568,6 @@ class BertSelfAttention(nn.Cell): compute_type (:class:`mindspore.dtype`): Compute type in BertSelfAttention. Default: mstype.float32. """ def __init__(self, - batch_size, seq_length, hidden_size, num_attention_heads=12, @@ -601,7 +583,6 @@ class BertSelfAttention(nn.Cell): "of attention heads (%d)" % (hidden_size, num_attention_heads)) self.size_per_head = int(hidden_size / num_attention_heads) self.attention = BertAttention( - batch_size=batch_size, from_tensor_width=hidden_size, to_tensor_width=hidden_size, from_seq_length=seq_length, @@ -636,7 +617,6 @@ class BertEncoderCell(nn.Cell): Encoder cells used in BertTransformer. Args: - batch_size (int): Batch size of input dataset. hidden_size (int): Size of the bert encoder layers. Default: 768. seq_length (int): Length of input sequence. Default: 512. num_attention_heads (int): Number of attention heads. Default: 12. @@ -651,7 +631,6 @@ class BertEncoderCell(nn.Cell): compute_type (:class:`mindspore.dtype`): Compute type in attention. Default: mstype.float32. """ def __init__(self, - batch_size, hidden_size=768, seq_length=512, num_attention_heads=12, @@ -665,7 +644,6 @@ class BertEncoderCell(nn.Cell): compute_type=mstype.float32): super(BertEncoderCell, self).__init__() self.attention = BertSelfAttention( - batch_size=batch_size, hidden_size=hidden_size, seq_length=seq_length, num_attention_heads=num_attention_heads, @@ -700,7 +678,6 @@ class BertTransformer(nn.Cell): Multi-layer bert transformer. Args: - batch_size (int): Batch size of input dataset. hidden_size (int): Size of the encoder layers. seq_length (int): Length of input sequence. num_hidden_layers (int): Number of hidden layers in encoder cells. @@ -717,7 +694,6 @@ class BertTransformer(nn.Cell): return_all_encoders (bool): Specifies whether to return all encoders. Default: False. """ def __init__(self, - batch_size, hidden_size, seq_length, num_hidden_layers, @@ -735,8 +711,7 @@ class BertTransformer(nn.Cell): self.return_all_encoders = return_all_encoders layers = [] for _ in range(num_hidden_layers): - layer = BertEncoderCell(batch_size=batch_size, - hidden_size=hidden_size, + layer = BertEncoderCell(hidden_size=hidden_size, seq_length=seq_length, num_attention_heads=num_attention_heads, intermediate_size=intermediate_size, @@ -751,7 +726,7 @@ class BertTransformer(nn.Cell): self.layers = nn.CellList(layers) self.reshape = P.Reshape() self.shape = (-1, hidden_size) - self.out_shape = (batch_size, seq_length, hidden_size) + self.out_shape = (-1, seq_length, hidden_size) def construct(self, input_tensor, attention_mask): """bert transformer""" prev_output = self.reshape(input_tensor, self.shape) @@ -782,22 +757,13 @@ class CreateAttentionMaskFromInputMask(nn.Cell): """ def __init__(self, config): super(CreateAttentionMaskFromInputMask, self).__init__() - self.input_mask_from_dataset = config.input_mask_from_dataset self.input_mask = None - if not self.input_mask_from_dataset: - self.input_mask = initializer( - "ones", [config.batch_size, config.seq_length], mstype.int32).to_tensor() self.cast = P.Cast() self.reshape = P.Reshape() - self.shape = (config.batch_size, 1, config.seq_length) - self.broadcast_ones = initializer( - "ones", [config.batch_size, config.seq_length, 1], mstype.float32).to_tensor() - self.batch_matmul = P.BatchMatMul() + self.shape = (-1, 1, config.seq_length) + def construct(self, input_mask): - if not self.input_mask_from_dataset: - input_mask = self.input_mask - input_mask = self.cast(self.reshape(input_mask, self.shape), mstype.float32) - attention_mask = self.batch_matmul(self.broadcast_ones, input_mask) + attention_mask = self.cast(self.reshape(input_mask, self.shape), mstype.float32) return attention_mask class BertModel(nn.Cell): @@ -818,20 +784,14 @@ class BertModel(nn.Cell): if not is_training: config.hidden_dropout_prob = 0.0 config.attention_probs_dropout_prob = 0.0 - self.input_mask_from_dataset = config.input_mask_from_dataset - self.token_type_ids_from_dataset = config.token_type_ids_from_dataset - self.batch_size = config.batch_size self.seq_length = config.seq_length self.hidden_size = config.hidden_size self.num_hidden_layers = config.num_hidden_layers self.embedding_size = config.hidden_size self.token_type_ids = None self.last_idx = self.num_hidden_layers - 1 - output_embedding_shape = [self.batch_size, self.seq_length, + output_embedding_shape = [-1, self.seq_length, self.embedding_size] - if not self.token_type_ids_from_dataset: - self.token_type_ids = initializer( - "zeros", [self.batch_size, self.seq_length], mstype.int32).to_tensor() self.bert_embedding_lookup = EmbeddingLookup( vocab_size=config.vocab_size, embedding_size=self.embedding_size, @@ -849,7 +809,6 @@ class BertModel(nn.Cell): max_position_embeddings=config.max_position_embeddings, dropout_prob=config.hidden_dropout_prob) self.bert_encoder = BertTransformer( - batch_size=self.batch_size, hidden_size=self.hidden_size, seq_length=self.seq_length, num_attention_heads=config.num_attention_heads, @@ -876,8 +835,6 @@ class BertModel(nn.Cell): def construct(self, input_ids, token_type_ids, input_mask): """bert model""" # embedding - if not self.token_type_ids_from_dataset: - token_type_ids = self.token_type_ids word_embeddings, embedding_tables = self.bert_embedding_lookup(input_ids) embedding_output = self.bert_embedding_postprocessor(token_type_ids, word_embeddings) # attention mask [batch_size, seq_length, seq_length] @@ -889,7 +846,7 @@ class BertModel(nn.Cell): # pooler sequence_slice = self.slice(sequence_output, (0, 0, 0), - (self.batch_size, 1, self.hidden_size), + (-1, 1, self.hidden_size), (1, 1, 1)) first_token = self.squeeze_1(sequence_slice) pooled_output = self.dense(first_token) @@ -921,20 +878,14 @@ class TinyBertModel(nn.Cell): if not is_training: config.hidden_dropout_prob = 0.0 config.attention_probs_dropout_prob = 0.0 - self.input_mask_from_dataset = config.input_mask_from_dataset - self.token_type_ids_from_dataset = config.token_type_ids_from_dataset - self.batch_size = config.batch_size self.seq_length = config.seq_length self.hidden_size = config.hidden_size self.num_hidden_layers = config.num_hidden_layers self.embedding_size = config.hidden_size self.token_type_ids = None self.last_idx = self.num_hidden_layers - 1 - output_embedding_shape = [self.batch_size, self.seq_length, + output_embedding_shape = [-1, self.seq_length, self.embedding_size] - if not self.token_type_ids_from_dataset: - self.token_type_ids = initializer( - "zeros", [self.batch_size, self.seq_length], mstype.int32).to_tensor() self.tinybert_embedding_lookup = EmbeddingLookup( vocab_size=config.vocab_size, embedding_size=self.embedding_size, @@ -952,7 +903,6 @@ class TinyBertModel(nn.Cell): max_position_embeddings=config.max_position_embeddings, dropout_prob=config.hidden_dropout_prob) self.tinybert_encoder = BertTransformer( - batch_size=self.batch_size, hidden_size=self.hidden_size, seq_length=self.seq_length, num_attention_heads=config.num_attention_heads, @@ -979,8 +929,6 @@ class TinyBertModel(nn.Cell): def construct(self, input_ids, token_type_ids, input_mask): """tiny bert model""" # embedding - if not self.token_type_ids_from_dataset: - token_type_ids = self.token_type_ids word_embeddings, embedding_tables = self.tinybert_embedding_lookup(input_ids) embedding_output = self.tinybert_embedding_postprocessor(token_type_ids, word_embeddings) @@ -993,7 +941,7 @@ class TinyBertModel(nn.Cell): # pooler sequence_slice = self.slice(sequence_output, (0, 0, 0), - (self.batch_size, 1, self.hidden_size), + (-1, 1, self.hidden_size), (1, 1, 1)) first_token = self.squeeze_1(sequence_slice) pooled_output = self.dense(first_token)