diff --git a/tests/st/dynamic_shape/test_dynamic_shape_embedding.py b/tests/st/dynamic_shape/test_dynamic_shape_embedding.py new file mode 100644 index 0000000000..33061ea691 --- /dev/null +++ b/tests/st/dynamic_shape/test_dynamic_shape_embedding.py @@ -0,0 +1,64 @@ +# Copyright 2020 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +import numpy as np +import pytest +import mindspore.nn as nn +from mindspore import Tensor, context +from mindspore.nn import TrainOneStepCell, WithLossCell + + +context.set_context(enable_sparse=True, + mode=context.GRAPH_MODE) + + +class NetWithEmbeddingLookUp(nn.Cell): + def __init__(self, vocab_size, embedding_size, target="CPU"): + super(NetWithEmbeddingLookUp, self).__init__() + self.embedding_lookup = \ + nn.EmbeddingLookup(vocab_size=vocab_size, + embedding_size=embedding_size, + param_init="ones", target=target) + + def construct(self, indices): + out = self.embedding_lookup(indices) + return out + + +@pytest.mark.level0 +@pytest.mark.platform_arm_ascend_training +@pytest.mark.platform_x86_ascend_training +@pytest.mark.platform_x86_gpu_training +@pytest.mark.env_onecard +def test_sit_embedding_lookup_net(): + indices = Tensor(np.array([0, 1, 2]).astype(np.int32)) + label = Tensor(np.random.randn(3, 8).astype(np.float32)) + + net1 = NetWithEmbeddingLookUp(vocab_size=8, embedding_size=8, target="CPU") + loss = nn.SoftmaxCrossEntropyWithLogits(reduction="mean") + optimizer1 = nn.Adam(params=net1.trainable_params(), learning_rate=0.1) + optimizer1.unique = True + train_network1 = TrainOneStepCell(WithLossCell(net1, loss), optimizer1) + train_network1.set_train() + out1 = train_network1(indices, label) + + net2 = NetWithEmbeddingLookUp(vocab_size=8, embedding_size=8, target="CPU") + optimizer2 = nn.Adam(params=net2.trainable_params(), learning_rate=0.1) + optimizer2.unique = False + optimizer2.target = "CPU" + train_network2 = TrainOneStepCell(WithLossCell(net2, loss), optimizer2) + train_network2.set_train() + out2 = train_network2(indices, label) + + assert np.allclose(out1.asnumpy(), out2.asnumpy(), 0.001, 0.001)