diff --git a/mindspore/ops/operations/math_ops.py b/mindspore/ops/operations/math_ops.py index a37d3b0293..8c6fa02d9b 100644 --- a/mindspore/ops/operations/math_ops.py +++ b/mindspore/ops/operations/math_ops.py @@ -595,9 +595,7 @@ class CumProd(PrimitiveWithInfer): Tensor, has the same shape and dtype as the `input_x`. Examples: - >>> a = 1 - >>> b = 2 - >>> c = 3 + >>> a, b, c, = 1, 2, 3 >>> input_x = Tensor(np.array([a, b, c]).astype(np.float32)) >>> op0 = P.CumProd() >>> output0 = op0(input_x, 0) # output=[a, a * b, a * b * c] diff --git a/mindspore/ops/operations/nn_ops.py b/mindspore/ops/operations/nn_ops.py index 29113818c7..cb2e821a76 100644 --- a/mindspore/ops/operations/nn_ops.py +++ b/mindspore/ops/operations/nn_ops.py @@ -1970,7 +1970,8 @@ class SmoothL1Loss(PrimitiveWithInfer): >>> loss = P.SmoothL1Loss() >>> input_data = Tensor(np.array([1, 2, 3]), mindspore.float32) >>> target_data = Tensor(np.array([1, 2, 2]), mindspore.float32) - >>> loss(input_data, target_data) + >>> output = loss(input_data, target_data) + >>> print(output) [0, 0, 0.5] """ @@ -2011,7 +2012,8 @@ class L2Loss(PrimitiveWithInfer): Examples >>> input_x = Tensor(np.array([1, 2, 3]), mindspore.float16) >>> l2_loss = P.L2Loss() - >>> l2_loss(input_x) + >>> output = l2_loss(input_x) + >>> print(output) 7.0 """ @@ -2047,7 +2049,8 @@ class DataFormatDimMap(PrimitiveWithInfer): Examples: >>> x = Tensor([0, 1, 2, 3], mindspore.int32) >>> dfdm = P.DataFormatDimMap() - >>> dfdm(x) + >>> output = dfdm(x) + >>> print(output) [0 3 1 2] """ @@ -2086,6 +2089,7 @@ class RNNTLoss(PrimitiveWithInfer): Examples: >>> B, T, U, V = 1, 2, 3, 5 + >>> blank = 0 >>> acts = np.random.random((B, T, U, V)).astype(np.float32) >>> labels = np.array([[1, 2]]).astype(np.int32) >>> input_length = np.array([T] * B).astype(np.int32) @@ -2238,7 +2242,8 @@ class ApplyRMSProp(PrimitiveWithInfer): >>> decay = 0.0 >>> momentum = 1e-10 >>> epsilon = 0.001 - >>> result = apply_rms(input_x, mean_square, moment, learning_rate, grad, decay, momentum, epsilon) + >>> output = apply_rms(input_x, mean_square, moment, learning_rate, grad, decay, momentum, epsilon) + >>> print(output) (-2.9977674, 0.80999994, 1.9987665) """ @@ -2336,8 +2341,9 @@ class ApplyCenteredRMSProp(PrimitiveWithInfer): >>> decay = 0.0 >>> momentum = 1e-10 >>> epsilon = 0.05 - >>> result = centered_rms_prop(input_x, mean_grad, mean_square, moment, grad, + >>> output = centered_rms_prop(input_x, mean_grad, mean_square, moment, grad, >>> learning_rate, decay, momentum, epsilon) + >>> print(output) [[[ -6. -9.024922] [-12.049845 -15.074766] [-18.09969 -21.124613]] @@ -2418,6 +2424,7 @@ class LayerNorm(Primitive): >>> beta = Tensor(np.ones([3]), mindspore.float32) >>> layer_norm = P.LayerNorm() >>> output = layer_norm(input_x, gamma, beta) + >>> print(output) ([[-0.22474492, 1., 2.2247488], [-0.22474492, 1., 2.2247488]], [[2.], [2.]], [[0.6666667], [0.6666667]]) """ @@ -2453,7 +2460,8 @@ class L2Normalize(PrimitiveWithInfer): Examples: >>> l2_normalize = P.L2Normalize() >>> input_x = Tensor(np.random.randint(-256, 256, (2, 3, 4)), mindspore.float32) - >>> result = l2_normalize(input_x) + >>> output = l2_normalize(input_x) + >>> print(output) [[[-0.47247353 -0.30934513 -0.4991462 0.8185567 ] [-0.08070751 -0.9961299 -0.5741758 0.09262337] [-0.9916556 -0.3049123 0.5730487 -0.40579924] @@ -2497,7 +2505,8 @@ class DropoutGenMask(Primitive): >>> dropout_gen_mask = P.DropoutGenMask() >>> shape = (2, 4, 5) >>> keep_prob = Tensor(0.5, mindspore.float32) - >>> mask = dropout_gen_mask(shape, keep_prob) + >>> output = dropout_gen_mask(shape, keep_prob) + >>> print(output) [249, 11, 134, 133, 143, 246, 89, 52, 169, 15, 94, 63, 146, 103, 7, 101] """ @@ -2601,7 +2610,8 @@ class ResizeBilinear(PrimitiveWithInfer): Examples: >>> tensor = Tensor([[[[1, 2, 3, 4, 5], [1, 2, 3, 4, 5]]]], mindspore.float32) >>> resize_bilinear = P.ResizeBilinear((5, 5)) - >>> result = resize_bilinear(tensor) + >>> output = resize_bilinear(tensor) + >>> print(output) [[[[1. 2. 3. 4. 5.] [1. 2. 3. 4. 5.] [1. 2. 3. 4. 5.] @@ -2657,7 +2667,8 @@ class OneHot(PrimitiveWithInfer): >>> indices = Tensor(np.array([0, 1, 2]), mindspore.int32) >>> depth, on_value, off_value = 3, Tensor(1.0, mindspore.float32), Tensor(0.0, mindspore.float32) >>> onehot = P.OneHot() - >>> result = onehot(indices, depth, on_value, off_value) + >>> output = onehot(indices, depth, on_value, off_value) + >>> print(output) [[1, 0, 0], [0, 1, 0], [0, 0, 1]] """ @@ -2948,10 +2959,11 @@ class SigmoidCrossEntropyWithLogits(PrimitiveWithInfer): Tensor, with the same shape and type as input `logits`. Examples: - >>> logits = Tensor(np.array([[-0.8, 1.2, 0.7], [-0.1, -0.4, 0.7]]).astype(np.float16)) - >>> labels = Tensor(np.array([[0.3, 0.8, 1.2], [-0.6, 0.1, 2.2]]).astype(np.float16)) + >>> logits = Tensor(np.array([[-0.8, 1.2, 0.7], [-0.1, -0.4, 0.7]]).astype(np.float32)) + >>> labels = Tensor(np.array([[0.3, 0.8, 1.2], [-0.6, 0.1, 2.2]]).astype(np.float32)) >>> sigmoid = P.SigmoidCrossEntropyWithLogits() - >>> sigmoid(logits, labels) + >>> output = sigmoid(logits, labels) + >>> print(output) [[0.6113 0.5034 0.263 ] [0.5845 0.553 -0.4365]] """