diff --git a/mindspore/nn/layer/basic.py b/mindspore/nn/layer/basic.py index 790b1208bb..41e327ff8f 100644 --- a/mindspore/nn/layer/basic.py +++ b/mindspore/nn/layer/basic.py @@ -756,8 +756,8 @@ class Triu(Cell): >>> triu = nn.Triu() >>> result = triu(x) >>> print(result) - [[1 0] - [3 4]] + [[1 2] + [0 4]] """ def __init__(self): super(Triu, self).__init__() diff --git a/mindspore/nn/probability/bijector/invert.py b/mindspore/nn/probability/bijector/invert.py index 6f9fead973..d87f8d45d7 100644 --- a/mindspore/nn/probability/bijector/invert.py +++ b/mindspore/nn/probability/bijector/invert.py @@ -44,7 +44,7 @@ class Invert(Bijector): [0. 0.6931472 1.0986123] >>> ans2 = inv_exp.inverse(value) >>> print(ans2) - [ 2.7182817 7.389056 20.085537 ] + [ 2.718282 7.389056 20.085537] >>> ans3 = inv_exp.forward_log_jacobian(value) >>> print(ans3) [-0. -0.6931472 -1.0986123] diff --git a/mindspore/ops/operations/math_ops.py b/mindspore/ops/operations/math_ops.py index ea0f8448d1..71f5f454a0 100644 --- a/mindspore/ops/operations/math_ops.py +++ b/mindspore/ops/operations/math_ops.py @@ -3216,7 +3216,7 @@ class Cos(PrimitiveWithInfer): >>> input_x = Tensor(np.array([0.24, 0.83, 0.31, 0.09]), mindspore.float32) >>> output = cos(input_x) >>> print(output) - [0.971338 0.67487574 0.95233357 0.9959527 ] + [0.971338 0.67487574 0.95233357 0.9959527 ] """ @prim_attr_register diff --git a/mindspore/ops/operations/nn_ops.py b/mindspore/ops/operations/nn_ops.py index 1c80c1ae8e..87337f14c9 100644 --- a/mindspore/ops/operations/nn_ops.py +++ b/mindspore/ops/operations/nn_ops.py @@ -3265,8 +3265,8 @@ class SigmoidCrossEntropyWithLogits(PrimitiveWithInfer): >>> sigmoid = ops.SigmoidCrossEntropyWithLogits() >>> output = sigmoid(logits, labels) >>> print(output) - [[0.6111007 0.5032824 0.26318604] - [0.58439666 0.5530153 -0.4368139 ]] + [[ 0.6111007 0.5032824 0.26318604] + [ 0.58439666 0.5530153 -0.4368139 ]] """ @prim_attr_register @@ -3308,10 +3308,10 @@ class Pad(PrimitiveWithInfer): >>> pad_op = ops.Pad(((1, 2), (2, 1))) >>> output = pad_op(input_tensor) >>> print(output) - [[ 0. 0. 0. 0. 0. 0. ], - [ 0. 0. -0.1 0.3 3.6 0. ], - [ 0. 0. 0.4 0.5 -3.2 0. ], - [ 0. 0. 0. 0. 0. 0. ], + [[ 0. 0. 0. 0. 0. 0. ] + [ 0. 0. -0.1 0.3 3.6 0. ] + [ 0. 0. 0.4 0.5 -3.2 0. ] + [ 0. 0. 0. 0. 0. 0. ] [ 0. 0. 0. 0. 0. 0. ]] """