diff --git a/model_zoo/official/cv/deeplabv3/README.md b/model_zoo/official/cv/deeplabv3/README.md
index 3918f3d1c1..bf69d4d3c6 100644
--- a/model_zoo/official/cv/deeplabv3/README.md
+++ b/model_zoo/official/cv/deeplabv3/README.md
@@ -85,7 +85,7 @@ For FP16 operators, if the input data type is FP32, the backend of MindSpore wil
# [Quick Start](#contents)
After installing MindSpore via the official website, you can start training and evaluation as follows:
-- Runing on Ascend
+- Running on Ascend
Based on original DeepLabV3 paper, we reproduce two training experiments on vocaug (also as trainaug) dataset and evaluate on voc val dataset.
@@ -130,7 +130,7 @@ run_eval_s8_multiscale_flip.sh
.
└──deeplabv3
├── README.md
- ├── script
+ ├── scripts
├── build_data.sh # convert raw data to mindrecord dataset
├── run_distribute_train_s16_r1.sh # launch ascend distributed training(8 pcs) with vocaug dataset in s16 structure
├── run_distribute_train_s8_r1.sh # launch ascend distributed training(8 pcs) with vocaug dataset in s8 structure
@@ -161,7 +161,7 @@ run_eval_s8_multiscale_flip.sh
## [Script Parameters](#contents)
-Default Configuration
+Default configuration
```
"data_file":"/PATH/TO/MINDRECORD_NAME" # dataset path
"train_epochs":300 # total epochs
@@ -177,7 +177,6 @@ Default Configuration
"ckpt_pre_trained":"/PATH/TO/PRETRAIN_MODEL" # path to load pretrain checkpoint
"is_distributed": # distributed training, it will be True if the parameter is set
"save_steps":410 # steps interval for saving
-"freeze_bn": # freeze_bn, it will be True if the parameter is set
"keep_checkpoint_max":200 # max checkpoint for saving
```
@@ -214,11 +213,11 @@ For 8 devices training, training steps are as follows:
# run_distribute_train_s16_r1.sh
for((i=0;i<=$RANK_SIZE-1;i++));
do
- export RANK_ID=$i
- export DEVICE_ID=`expr $i + $RANK_START_ID`
- echo 'start rank='$i', device id='$DEVICE_ID'...'
- mkdir ${train_path}/device$DEVICE_ID
- cd ${train_path}/device$DEVICE_ID
+ export RANK_ID=${i}
+ export DEVICE_ID=$((i + RANK_START_ID))
+ echo 'start rank='${i}', device id='${DEVICE_ID}'...'
+ mkdir ${train_path}/device${DEVICE_ID}
+ cd ${train_path}/device${DEVICE_ID} || exit
python ${train_code_path}/train.py --train_dir=${train_path}/ckpt \
--data_file=/PATH/TO/MINDRECORD_NAME \
--train_epochs=300 \
@@ -242,11 +241,11 @@ done
# run_distribute_train_s8_r1.sh
for((i=0;i<=$RANK_SIZE-1;i++));
do
- export RANK_ID=$i
- export DEVICE_ID=`expr $i + $RANK_START_ID`
- echo 'start rank='$i', device id='$DEVICE_ID'...'
- mkdir ${train_path}/device$DEVICE_ID
- cd ${train_path}/device$DEVICE_ID
+ export RANK_ID=${i}
+ export DEVICE_ID=$((i + RANK_START_ID))
+ echo 'start rank='${i}', device id='${DEVICE_ID}'...'
+ mkdir ${train_path}/device${DEVICE_ID}
+ cd ${train_path}/device${DEVICE_ID} || exit
python ${train_code_path}/train.py --train_dir=${train_path}/ckpt \
--data_file=/PATH/TO/MINDRECORD_NAME \
--train_epochs=800 \
@@ -271,11 +270,11 @@ done
# run_distribute_train_s8_r2.sh
for((i=0;i<=$RANK_SIZE-1;i++));
do
- export RANK_ID=$i
- export DEVICE_ID=`expr $i + $RANK_START_ID`
- echo 'start rank='$i', device id='$DEVICE_ID'...'
- mkdir ${train_path}/device$DEVICE_ID
- cd ${train_path}/device$DEVICE_ID
+ export RANK_ID=${i}
+ export DEVICE_ID=$((i + RANK_START_ID))
+ echo 'start rank='${i}', device id='${DEVICE_ID}'...'
+ mkdir ${train_path}/device${DEVICE_ID}
+ cd ${train_path}/device${DEVICE_ID} || exit
python ${train_code_path}/train.py --train_dir=${train_path}/ckpt \
--data_file=/PATH/TO/MINDRECORD_NAME \
--train_epochs=300 \
@@ -353,7 +352,7 @@ Epoch time: 5962.164, per step time: 542.015
## [Evaluation Process](#contents)
### Usage
#### Running on Ascend
-Config checkpoint with --ckpt_path, run script, mIOU with print in eval_path/eval_log.
+Configure checkpoint with --ckpt_path and dataset path. Then run script, mIOU will be printed in eval_path/eval_log.
```
./run_eval_s16.sh # test s16
./run_eval_s8.sh # test s8
@@ -409,9 +408,27 @@ Note: There OS is output stride, and MS is multiscale.
| Loss Function | Softmax Cross Entropy |
| Outputs | probability |
| Loss | 0.0065883575 |
-| Speed | 31ms/step(1pc, s8)
234ms/step(8pcs, s8) |
-| Checkpoint for Fine tuning | 443M (.ckpt file) |
-| Scripts | [Link](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/deeplabv3) |
+| Speed | 60 ms/step(1pc, s16)
480 ms/step(8pcs, s16)
244 ms/step (8pcs, s8) |
+| Total time | 8pcs: 706 mins |
+| Parameters (M) | 58.2 |
+| Checkpoint for Fine tuning | 443M (.ckpt file) |
+| Model for inference | 223M (.air file) |
+| Scripts | [Link](https://gitee.com/mindspore/mindspore/tree/r1.0/model_zoo/official/cv/deeplabv3) |
+
+### Inference Performance
+
+| Parameters | Ascend |
+| ------------------- | --------------------------- |
+| Model Version | DeepLabV3 V1 |
+| Resource | Ascend 910 |
+| Uploaded Date | 09/04/2020 (month/day/year) |
+| MindSpore Version | 0.7.0-alpha |
+| Dataset | VOC datasets |
+| batch_size | 32 (s16); 16 (s8) |
+| outputs | probability |
+| Accuracy | 8pcs:
s16: 77.37
s8: 78.84%
s8_multiscale: 79.70%
s8_Flip: 79.89% |
+| Model for inference | 443M (.ckpt file) |
+
# [Description of Random Situation](#contents)
In dataset.py, we set the seed inside "create_dataset" function. We also use random seed in train.py.