# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ test ops """ import numpy as np import mindspore.nn as nn import mindspore.ops.composite as C import mindspore.ops.functional as F import mindspore.ops.operations as P from mindspore import Tensor from mindspore.common.api import _executor grad_all_with_sens = C.GradOperation(get_all=True, sens_param=True) class InputBackward(nn.Cell): """ InputBackward definition """ def __init__(self, network, c1=None, c2=None): super(InputBackward, self).__init__() self.network = network self.network.set_train() self.grad = grad_all_with_sens self.c1 = c1 self.c2 = c2 def construct(self, *inputs): pass def construct1(self, x1, sens): return self.grad(self.network)(x1, sens) def construct2(self, x1, x2, sens): return self.grad(self.network)(x1, x2, sens) def construct3(self, x1, x2, x3, sens): return self.grad(self.network)(x1, x2, x3, sens) def construct4(self, x1, x2, x3, x4, sens): return self.grad(self.network)(x1, x2, x3, x4, sens) def construct5(self, x1, x2, x3, x4, x5, sens): return self.grad(self.network)(x1, x2, x3, x4, x5, sens) def construct6(self, x1, x2, x3, x4, x5, x6, sens): return self.grad(self.network)(x1, x2, x3, x4, x5, x6, sens) def construct7(self, x1, x2, x3, x4, x5, x6, x7, sens): return self.grad(self.network)(x1, x2, x3, x4, x5, x6, x7, sens) class InputOpNet(nn.Cell): """ InputOpNet definition """ def __init__(self, op, get_first=False, c1=None, c2=None, c3=None, c4=None): super(InputOpNet, self).__init__() self.op = op self.get_first = get_first self.c1 = c1 self.c2 = c2 self.c3 = c3 self.c4 = c4 def construct(self, *inputs): pass def construct0_c0_fack(self, data): x = self.op() + data if self.get_first: x = x[0] return x def construct0_c1_fack(self, data): x = self.op(self.c1) + data if self.get_first: x = x[0] return x def construct0_c2_fack(self, data): x = self.op(self.c1, self.c2) + data if self.get_first: x = x[0] return x def construct0_c0(self): x = self.op() if self.get_first: x = x[0] return x def construct0_c1(self): x = self.op(self.c1) if self.get_first: x = x[0] return x def construct0_c2(self): x = self.op(self.c1, self.c2) if self.get_first: x = x[0] return x def construct1_c0(self, x1): x = self.op(x1) if self.get_first: x = x[0] return x def construct1_c1(self, x1): x = self.op(x1, self.c1) if self.get_first: x = x[0] return x def construct1_c2(self, x1): x = self.op(x1, self.c1, self.c2) if self.get_first: x = x[0] return x def construct1_c3(self, x1): x = self.op(x1, self.c1, self.c2, self.c3) if self.get_first: x = x[0] return x def construct1_c4(self, x1): x = self.op(x1, self.c1, self.c2, self.c3, self.c4) if self.get_first: x = x[0] return x def constructc1_1(self, x1): x = self.op(self.c1, x1) if self.get_first: x = x[0] return x def construct2_c0(self, x1, x2): x = self.op(x1, x2) if self.get_first: x = x[0] return x def construct2_c1(self, x1, x2): x = self.op(x1, x2, self.c1) if self.get_first: x = x[0] return x def construct2_c3(self, x1, x2): x = self.op(x1, x2, self.c1, self.c2, self.c3) if self.get_first: x = x[0] return x def construct3_c0(self, x1, x2, x3): x = self.op(x1, x2, x3) if self.get_first: x = x[0] return x def construct3_c1(self, x1, x2, x3): x = self.op(x1, x2, x3, self.c1) if self.get_first: x = x[0] return x def construct4_c0(self, x1, x2, x3, x4): x = self.op(x1, x2, x3, x4) if self.get_first: x = x[0] return x def construct4_c1(self, x1, x2, x3, x4): x = self.op(x1, x2, x3, x4, self.c1) if self.get_first: x = x[0] return x def construct5_c0(self, x1, x2, x3, x4, x5): x = self.op(x1, x2, x3, x4, x5) if self.get_first: x = x[0] return x def construct6_c0(self, x1, x2, x3, x4, x5, x6): x = self.op(x1, x2, x3, x4, x5, x6) if self.get_first: x = x[0] return x def construct5_c1(self, x1, x2, x3, x4, x5): x = self.op(x1, x2, x3, x4, x5, self.c1) if self.get_first: x = x[0] return x class NetOutputAsLoss(nn.Cell): """ NetOutputAsLoss definition """ def __init__(self, network, output_index): super(NetOutputAsLoss, self).__init__() self.network = network self.output_index = output_index def construct(self, *inputs): pass def construct1(self, x1): predict = self.network(x1)[self.output_index] return predict def construct2(self, x1, x2): predict = self.network(x1, x2)[self.output_index] return predict def construct3(self, x1, x2, x3): predict = self.network(x1, x2, x3)[self.output_index] return predict def construct4(self, x1, x2, x3, x4): predict = self.network(x1, x2, x3, x4)[self.output_index] return predict def construct5(self, x1, x2, x3, x4, x5): predict = self.network(x1, x2, x3, x4, x5)[self.output_index] return predict def get_loss_fun(construct_net, num_input, output_index): net = NetOutputAsLoss(construct_net, output_index) f = getattr(net, 'construct%d' % num_input) setattr(net, "construct", f) return net def build_construct_graph(net, *inputs, execute=True): net.set_train() _executor.compile(net, *inputs) if execute: _executor(net, inputs) def build_backward_graph(net, output_shapes, inputs, execute=True): inputs = append_sens_to_inputs(output_shapes, inputs) net = gen_backward_net(net, len(inputs) - 1) net.set_train() _executor.compile(net, inputs) if execute: _executor(net, inputs) def convert(shp, dtype=np.float32, scale=6): if isinstance(shp, list): if not shp: return Tensor((np.random.rand() * scale).astype(dtype)) return Tensor((np.random.rand(*shp) * scale).astype(dtype)) return shp def gen_inputs(input_shapes, config): add_fack_input = config.get('add_fack_input', False) if not input_shapes and add_fack_input: return [Tensor(np.array([1.0]).astype(config.get('fack_input_type', np.float32)))] return [convert(shp) for shp in input_shapes] def gen_backward_inputs(input_shapes, output_shapes, config): add_fack_input = config.get('add_fack_input', False) if not input_shapes and add_fack_input: inputs = [Tensor(np.array([1.0]))] else: inputs = [convert(shp) for shp in input_shapes] sens_shape = output_shapes[0] sens = convert(sens_shape) return inputs + [sens] def append_sens_to_inputs(output_shapes, inputs): inputs = inputs sens = Tensor(np.random.normal(0, 1, output_shapes).astype(np.float32)) return inputs + [sens] def gen_net(shapes, config, get_first=False): """ gen_net function """ add_fack_input = config.get('add_fack_input', False) op = config['op'] if 'const' not in config: const_input = [] else: const_input = config['const'] const_first = False if 'const_first' in config: const_first = config['const_first'] net = InputOpNet(op, get_first, *const_input) if const_first: fn_name = 'constructc%d_%d' % (len(const_input), len(shapes)) else: fn_name = 'construct%d_c%d' % (len(shapes), len(const_input)) if add_fack_input: fn_name += '_fack' f = getattr(net, fn_name) setattr(net, "construct", f) return net def gen_backward_net(construct_net, input_num): net = InputBackward(construct_net) f = getattr(net, 'construct%d' % input_num) setattr(net, "construct", f) return net def batch_tuple_tensor(data, batch_size): ret = [Tensor(np.tile(d.asnumpy(), (batch_size, 1))) for d in data] return tuple(ret) class OutPutWrap(nn.Cell): """ OutPutWrap definition """ def __init__(self, network, num_output, output_is_tuple): super(OutPutWrap, self).__init__() self.network = network self.num_output = num_output self.one = Tensor(np.array([1])) self.dtype = P.DType() self.cast = P.Cast() self.output_is_tuple = output_is_tuple def construct(self, *inputs): pass def construct1(self, x1): ret = F.make_tuple() predict = self.network(x1) if self.num_output == 1 and self.output_is_tuple == 0: return predict * self.cast(self.one, self.dtype(predict)) for i in range(self.num_output): ret = ret + F.make_tuple(predict[i] * self.cast(self.one, self.dtype(predict[i]))) return ret def construct2(self, x1, x2): ret = F.make_tuple() predict = self.network(x1, x2) if self.num_output == 1 and self.output_is_tuple == 0: return predict * self.cast(self.one, self.dtype(predict)) for i in range(self.num_output): ret = ret + F.make_tuple(predict[i] * self.cast(self.one, self.dtype(predict[i]))) return ret def construct3(self, x1, x2, x3): ret = F.make_tuple() predict = self.network(x1, x2, x3) if self.num_output == 1 and self.output_is_tuple == 0: return predict * self.cast(self.one, self.dtype(predict)) for i in range(self.num_output): ret = ret + F.make_tuple(predict[i] * self.cast(self.one, self.dtype(predict[i]))) return ret def construct4(self, x1, x2, x3, x4): ret = F.make_tuple() predict = self.network(x1, x2, x3, x4) if self.num_output == 1 and self.output_is_tuple == 0: return predict * self.cast(self.one, self.dtype(predict)) for i in range(self.num_output): ret = ret + F.make_tuple(predict[i] * self.cast(self.one, self.dtype(predict[i]))) return ret def construct5(self, x1, x2, x3, x4, x5): ret = F.make_tuple() predict = self.network(x1, x2, x3, x4, x5) if self.num_output == 1 and self.output_is_tuple == 0: return predict * self.cast(self.one, self.dtype(predict)) for i in range(self.num_output): ret = ret + F.make_tuple(predict[i] * self.cast(self.one, self.dtype(predict[i]))) return ret def construct6(self, x1, x2, x3, x4, x5, x6): ret = F.make_tuple() predict = self.network(x1, x2, x3, x4, x5, x6) if self.num_output == 1 and self.output_is_tuple == 0: return predict * self.cast(self.one, self.dtype(predict)) for i in range(self.num_output): ret = ret + F.make_tuple(predict[i] * self.cast(self.one, self.dtype(predict[i]))) return ret def get_output_wrap(network, num_input, num_output, output_is_tuple=0): net = OutPutWrap(network, num_output, output_is_tuple) f = getattr(net, 'construct%d' % num_input) setattr(net, "construct", f) return net