# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import os import numpy as np import mindspore.communication.management as distributedTool import mindspore.nn as nn from mindspore import context from mindspore.nn.metrics import Accuracy from mindspore.train import Model from mindspore.train.callback import LossMonitor, TimeMonitor from model_zoo.official.cv.lenet.src.dataset import create_dataset from model_zoo.official.cv.lenet.src.lenet import LeNet5 np.set_printoptions(threshold=np.inf) device_num = 2 device_id = int(os.getenv('DEVICE_ID')) rank_id = 0 def setup_module(): global device_num global rank_id context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") context.set_context(device_id=device_id) distributedTool.init() rank_id = distributedTool.get_rank() device_num = distributedTool.get_group_size() context.set_auto_parallel_context(device_num=device_num, global_rank=device_id, parameter_broadcast=True) def teardown_module(): distributedTool.release() def test_all_trains(): ds_train = create_dataset(os.path.join('/home/workspace/mindspore_dataset/mnist', "train"), 32, 1) network = LeNet5(10) net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean") net_opt = nn.Momentum(network.trainable_params(), 0.01, 0.9) time_cb = TimeMonitor(data_size=ds_train.get_dataset_size()) model = Model(network, net_loss, net_opt, metrics={"Accuracy": Accuracy()}) print("============== Starting Training ==============") model.train(1, ds_train, callbacks=[time_cb, LossMonitor()])