# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context from mindspore import Tensor, nn from mindspore.common import dtype as mstype class CaseNet(nn.Cell): def __init__(self): super(CaseNet, self).__init__() self.conv = nn.Conv2d(1, 1, 3) self.relu = nn.ReLU() self.relu1 = nn.ReLU() self.softmax = nn.Softmax() self.layers1 = (self.relu, self.softmax) self.layers2 = (self.conv, self.relu1) def construct(self, x, index1, index2): x = self.layers1[index1](x) x = self.layers2[index2](x) return x @pytest.mark.level0 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_switch_layer(): context.set_context(mode=context.GRAPH_MODE) net = CaseNet() data = Tensor(np.ones((1, 1, 224, 224)), mstype.float32) idx = Tensor(0, mstype.int32) idx2 = Tensor(-1, mstype.int32) value = net(data, idx, idx2) relu = nn.ReLU() true_value = relu(data) ret = np.allclose(value.asnumpy(), true_value.asnumpy()) assert ret