# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor import mindspore.common.dtype as mstype from mindspore.ops import operations as P context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.unique = P.Unique().add_prim_attr("primitive_target", "CPU") def construct(self, x): x, y = self.unique(x) return (x, y) class UniqueSquare(nn.Cell): def __init__(self): super(UniqueSquare, self).__init__() self.unique = P.Unique().add_prim_attr("primitive_target", "CPU") self.square = P.Square() def construct(self, x): x, _ = self.unique(x) return self.square(x) @pytest.mark.level0 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_unique_ascend(): x = Tensor(np.array([1, 1, 2, 2, 3, 3]), mstype.int32) unique = Net() output = unique(x) expect1 = np.array([1, 2, 3]) expect2 = np.array([0, 0, 1, 1, 2, 2]) assert (output[0].asnumpy() == expect1).all() assert (output[1].asnumpy() == expect2).all() @pytest.mark.level0 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_unique_square(): x = Tensor(np.array([1, 1, 2, 2, 3, 3]), mstype.int32) net = UniqueSquare() output = net(x) expect1 = np.array([1, 4, 9]) assert (output.asnumpy() == expect1).all()