# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor, Parameter import mindspore.common.dtype as mstype from mindspore.ops import operations as P context.set_context(mode=context.GRAPH_MODE, device_target="CPU") class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.unique = P.Unique() self.dynamic_assign = P.DynamicAssign() self.param = Parameter( Tensor(np.zeros((5,), np.int32)), name="assign_x") def construct(self, y): y, _ = self.unique(y) return self.dynamic_assign(self.param, y) @pytest.mark.level0 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_dynamic_assign(): y = Tensor(np.array([2, 2, 3, 3, 4]), mstype.int32) dynamic_assign = Net() _ = dynamic_assign(y) expect1 = np.array([2, 3, 4]) param_np = dynamic_assign.param.data.asnumpy() assert (param_np == expect1).all()