# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import mindspore.common.dtype as mstype import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.ops import operations as P context.set_context(mode=context.GRAPH_MODE, device_id=5, device_target="Ascend") class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.softmax = P.Softmax(axis=1) self.add = P.Add() self.cast = P.Cast() self.relu = P.ReLU() self.reduce_mean = P.ReduceMean() def construct(self, x, y): x = self.cast(x, mstype.float16) y = self.cast(y, mstype.float16) x = self.add(x, y) x = self.relu(x) x = self.reduce_mean(x) return x def test_net(): x = np.random.randn(32, 10).astype(np.float32) relu = Net() output = relu(Tensor(x), Tensor(x)) print(output.asnumpy())