# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor, Model, ms_function from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits from mindspore.ops import operations as P context.set_context(device_target="Ascend") input_channel = 2048 output_channel = 512 num_class = 10 batch_size = 32 class MsWrapper(nn.Cell): def __init__(self, network): super(MsWrapper, self).__init__(auto_prefix=False) self._network = network @ms_function def construct(self, *args): return self._network(*args) def me_train_tensor(net, input_np, label_np, epoch_size=2): loss = SoftmaxCrossEntropyWithLogits(sparse=True) opt = nn.Momentum(Tensor(np.array([0.1])), Tensor(np.array([0.9])), filter(lambda x: x.requires_grad, net.get_parameters())) context.set_context(mode=context.GRAPH_MODE) Model(net, loss, opt) _network = nn.WithLossCell(net, loss) _train_net = MsWrapper(nn.TrainOneStepCell(_network, opt)) _train_net.set_train() for epoch in range(0, epoch_size): print(f"epoch %d" % (epoch)) output = _train_net(Tensor(input_np), Tensor(label_np)) print(output.asnumpy()) def test_conv_bn_add_relu_fusion(): class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.conv = nn.Conv2d(input_channel, output_channel, kernel_size=1, stride=1, padding=0, has_bias=False, pad_mode="same") self.conv1 = nn.Conv2d(input_channel, output_channel, kernel_size=1, stride=1, padding=0, has_bias=False, pad_mode="same") self.bn = nn.BatchNorm2d(output_channel, momentum=0.1, eps=0.0001) self.add = P.Add() self.relu = P.ReLU() self.mean = P.ReduceMean(keep_dims=True) self.reshape = P.Reshape() self.dense = nn.Dense(output_channel, num_class) def construct(self, input_x): output = self.conv(input_x) output = self.bn(output) output = self.add(output, self.conv1(input_x)) output = self.relu(output) output = self.mean(output, (-2, -1)) output = self.reshape(output, (batch_size, output_channel)) output = self.dense(output) return output net = Net() input_np = np.ones([batch_size, input_channel, 7, 7]).astype(np.float32) * 0.01 label_np = np.ones([batch_size]).astype(np.int32) me_train_tensor(net, input_np, label_np) def test_conv_bn_relu_fusion(): class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.conv = nn.Conv2d(input_channel, output_channel, kernel_size=1, stride=1, padding=0, has_bias=False, pad_mode="same") self.bn = nn.BatchNorm2d(output_channel, momentum=0.1, eps=0.0001) self.relu = P.ReLU() self.mean = P.ReduceMean(keep_dims=True) self.reshape = P.Reshape() self.dense = nn.Dense(output_channel, num_class) def construct(self, input_x): output = self.conv(input_x) output = self.bn(output) output = self.relu(output) output = self.mean(output, (-2, -1)) output = self.reshape(output, (batch_size, output_channel)) output = self.dense(output) return output net = Net() input_np = np.ones([batch_size, input_channel, 7, 7]).astype(np.float32) * 0.01 label_np = np.ones([batch_size]).astype(np.int32) me_train_tensor(net, input_np, label_np) def test_conv_bn_fusion(): class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.conv = nn.Conv2d(input_channel, output_channel, kernel_size=1, stride=1, padding=0, has_bias=False, pad_mode="same") self.bn = nn.BatchNorm2d(output_channel, momentum=0.1, eps=0.0001) self.mean = P.ReduceMean(keep_dims=True) self.reshape = P.Reshape() self.dense = nn.Dense(output_channel, num_class) def construct(self, input_x): output = self.conv(input_x) output = self.bn(output) output = self.mean(output, (-2, -1)) output = self.reshape(output, (batch_size, output_channel)) output = self.dense(output) return output net = Net() input_np = np.ones([batch_size, input_channel, 7, 7]).astype(np.float32) * 0.01 label_np = np.ones([batch_size]).astype(np.int32) me_train_tensor(net, input_np, label_np)