# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.ops import operations as P from mindspore.ops.operations import _grad_ops as G context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.cast = P.Cast() self.relu = P.ReLU() self.biasaddgrad = G.BiasAddGrad() def construct(self, x): x = self.relu(x) x = self.relu(x) x = self.relu(x) x = self.biasaddgrad(x) x = self.relu(x) x = self.relu(x) x = self.relu(x) return x @pytest.mark.level0 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_net(): x = np.random.randn(32, 10).astype(np.float32) net = Net() output = net(Tensor(x)) print(output.asnumpy())