# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """test gat model.""" import numpy as np import mindspore.nn as nn import mindspore.context as context from mindspore import Tensor from mindspore.common.api import _executor from gat import GAT context.set_context(mode=context.GRAPH_MODE) def test_GAT(): ft_sizes = 1433 num_class = 7 num_nodes = 2708 hid_units = [8] n_heads = [8, 1] activation = nn.ELU() residual = False input_data = Tensor( np.array(np.random.rand(1, 2708, 1433), dtype=np.float32)) biases = Tensor(np.array(np.random.rand(1, 2708, 2708), dtype=np.float32)) net = GAT(ft_sizes, num_class, num_nodes, hidden_units=hid_units, num_heads=n_heads, attn_drop=0.6, ftr_drop=0.6, activation=activation, residual=residual) _executor.compile(net, input_data, biases)