# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.common.api import ms_function from mindspore.ops import operations as P from mindspore.ops.composite import GradOperation context.set_context(device_target="Ascend") class Grad(nn.Cell): def __init__(self, network): super(Grad, self).__init__() self.grad = GradOperation(get_all=True, sens_param=True) self.network = network @ms_function def construct(self, input_, output_grad): return self.grad(self.network)(input_, output_grad) class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.maxpool = P.MaxPool(pad_mode="SAME", window=3, stride=2) @ms_function def construct(self, x): output = self.maxpool(x) return output def test_net(): x = np.random.randn(32, 64, 112, 112).astype(np.float32) output_grad = np.random.randn(32, 64, 56, 56).astype(np.float32) net = Grad(Net()) output = net(Tensor(x), Tensor(output_grad)) if isinstance(output, (tuple, list)): output = output[0] print(output.asnumpy())