# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import mindspore.context as context import mindspore.nn as nn import mindspore.common.dtype as mstype from mindspore import Tensor from mindspore.ops import operations as P context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") class Net(nn.Cell): def __init__(self, pad_num): super(Net, self).__init__() self.unique_with_pad = P.UniqueWithPad() self.pad_num = pad_num def construct(self, x): return self.unique_with_pad(x, self.pad_num) def test_unique_with_pad(): x = Tensor(np.array([1, 1, 5, 5, 4, 4, 3, 3, 2, 2]), mstype.int32) pad_num = 8 unique_with_pad = Net(pad_num) out = unique_with_pad(x) expect_val = ([1, 5, 4, 3, 2, 8, 8, 8, 8, 8], [0, 0, 1, 1, 2, 2, 3, 3, 4, 4]) assert(out[0].asnumpy() == expect_val[0]).all() assert(out[1].asnumpy() == expect_val[1]).all()