# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.common.dtype as mstype import mindspore.context as context from mindspore.common.tensor import Tensor from mindspore.nn import Cell from mindspore.ops import operations as P class Net(Cell): def __init__(self, dtype): super(Net, self).__init__() self.Cast = P.Cast() self.dtype = dtype def construct(self, x): return self.Cast(x, self.dtype) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_cast_bool(): tensor_to_cast = [] tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.bool))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.float16))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.float32))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.float64))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int8))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int16))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int32))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int64))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint8))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint16))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint32))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint64))) t = mstype.bool_ context.set_context(mode=context.GRAPH_MODE, device_target='CPU') for tensor in tensor_to_cast: net = Net(t) output = net(tensor) assert output.asnumpy().dtype == 'bool' @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_cast_float16(): tensor_to_cast = [] tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.bool))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.float16))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.float32))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.float64))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int8))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int16))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int32))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int64))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint8))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint16))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint32))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint64))) t = mstype.float16 context.set_context(mode=context.GRAPH_MODE, device_target='CPU') for tensor in tensor_to_cast: net = Net(t) output = net(tensor) assert output.asnumpy().dtype == 'float16' @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_cast_float32(): tensor_to_cast = [] tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.bool))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.float16))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.float32))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.float64))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int8))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int16))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int32))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int64))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint8))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint16))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint32))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint64))) t = mstype.float32 context.set_context(mode=context.GRAPH_MODE, device_target='CPU') for tensor in tensor_to_cast: net = Net(t) output = net(tensor) assert output.asnumpy().dtype == 'float32' @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_cast_float64(): tensor_to_cast = [] tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.bool))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.float16))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.float32))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.float64))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int8))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int16))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int32))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int64))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint8))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint16))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint32))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint64))) t = mstype.float64 context.set_context(mode=context.GRAPH_MODE, device_target='CPU') for tensor in tensor_to_cast: net = Net(t) output = net(tensor) assert output.asnumpy().dtype == 'float64' @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_cast_int8(): tensor_to_cast = [] tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.bool))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.float16))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.float32))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.float64))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int8))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int16))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int32))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int64))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint8))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint16))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint32))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint64))) t = mstype.int8 context.set_context(mode=context.GRAPH_MODE, device_target='CPU') for tensor in tensor_to_cast: net = Net(t) output = net(tensor) assert output.asnumpy().dtype == 'int8' @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_cast_int16(): tensor_to_cast = [] tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.bool))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.float16))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.float32))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.float64))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int8))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int16))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int32))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int64))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint8))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint16))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint32))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint64))) t = mstype.int16 context.set_context(mode=context.GRAPH_MODE, device_target='CPU') for tensor in tensor_to_cast: net = Net(t) output = net(tensor) assert output.asnumpy().dtype == 'int16' @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_cast_int32(): tensor_to_cast = [] tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.bool))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.float16))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.float32))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.float64))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int8))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int16))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int32))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int64))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint8))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint16))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint32))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint64))) t = mstype.int32 context.set_context(mode=context.GRAPH_MODE, device_target='CPU') for tensor in tensor_to_cast: net = Net(t) output = net(tensor) assert output.asnumpy().dtype == 'int32' @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_cast_int64(): tensor_to_cast = [] tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.bool))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.float16))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.float32))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.float64))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int8))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int16))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int32))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int64))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint8))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint16))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint32))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint64))) t = mstype.int64 context.set_context(mode=context.GRAPH_MODE, device_target='CPU') for tensor in tensor_to_cast: net = Net(t) output = net(tensor) assert output.asnumpy().dtype == 'int64' @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_cast_uint8(): tensor_to_cast = [] tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.bool))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.float16))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.float32))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.float64))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int8))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int16))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int32))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int64))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint8))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint16))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint32))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint64))) t = mstype.uint8 context.set_context(mode=context.GRAPH_MODE, device_target='CPU') for tensor in tensor_to_cast: net = Net(t) output = net(tensor) assert output.asnumpy().dtype == 'uint8' @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_cast_uint16(): tensor_to_cast = [] tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.bool))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.float16))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.float32))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.float64))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int8))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int16))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int32))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int64))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint8))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint16))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint32))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint64))) t = mstype.uint16 context.set_context(mode=context.GRAPH_MODE, device_target='CPU') for tensor in tensor_to_cast: net = Net(t) output = net(tensor) assert output.asnumpy().dtype == 'uint16' @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_cast_uint32(): tensor_to_cast = [] tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.bool))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.float16))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.float32))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.float64))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int8))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int16))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int32))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int64))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint8))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint16))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint32))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint64))) t = mstype.uint32 context.set_context(mode=context.GRAPH_MODE, device_target='CPU') for tensor in tensor_to_cast: net = Net(t) output = net(tensor) assert output.asnumpy().dtype == 'uint32' @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_cast_uint64(): tensor_to_cast = [] tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.bool))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.float16))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.float32))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.float64))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int8))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int16))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int32))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int64))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint8))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint16))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint32))) tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint64))) t = mstype.uint64 context.set_context(mode=context.GRAPH_MODE, device_target='CPU') for tensor in tensor_to_cast: net = Net(t) output = net(tensor) assert output.asnumpy().dtype == 'uint64'