# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0(the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http: // www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # == == == == == == == == == == == == == == == == == == == == == == == == == == == == == == == == == == == == == == import numpy as np import pytest import mindspore.common.dtype as mstype import mindspore.nn as nn from mindspore import Tensor, context from mindspore.common.api import ms_function from mindspore.ops import operations as P context.set_context(mode=context.GRAPH_MODE, device_target='CPU') class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.mul = P.Mul() @ms_function def construct(self, x, y): return self.mul(x, y) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_mul(): x0 = Tensor(np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(np.float32)) y0 = Tensor(np.random.uniform(-2, 2, (1, 1, 1, 1)).astype(np.float32)) x1 = Tensor(np.random.uniform(-2, 2, (1, 3, 1, 4)).astype(np.float32)) y1 = Tensor(np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(np.float32)) x2 = Tensor(np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(np.float32)) y2 = Tensor(2, mstype.float32) x3 = Tensor(2, mstype.float32) y3 = Tensor(2, mstype.float32) x4 = Tensor(np.random.uniform(-2, 2, (4)).astype(np.float32)) y4 = Tensor(np.random.uniform(-2, 2, (4, 4)).astype(np.float32)) mul = Net() out = mul(x0, y0).asnumpy() exp = x0.asnumpy() * y0.asnumpy() diff = np.abs(out - exp) err = np.ones(shape=exp.shape) * 1.0e-5 assert np.all(diff < err) assert out.shape == exp.shape out = mul(x1, y1).asnumpy() exp = x1.asnumpy() * y1.asnumpy() diff = np.abs(out - exp) err = np.ones(shape=exp.shape) * 1.0e-5 assert np.all(diff < err) assert out.shape == exp.shape out = mul(x2, y2).asnumpy() exp = x2.asnumpy() * y2.asnumpy() diff = np.abs(out - exp) err = np.ones(shape=exp.shape) * 1.0e-5 assert np.all(diff < err) assert out.shape == exp.shape out = mul(x3, y3).asnumpy() exp = x3.asnumpy() * y3.asnumpy() diff = np.abs(out - exp) err = np.ones(shape=exp.shape) * 1.0e-5 assert np.all(diff < err) assert out.shape == exp.shape out = mul(x4, y4).asnumpy() exp = x4.asnumpy() * y4.asnumpy() diff = np.abs(out - exp) err = np.ones(shape=exp.shape) * 1.0e-5 assert np.all(diff < err) assert out.shape == exp.shape @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_mul_int32(): x0 = Tensor(np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(np.int32)) y0 = Tensor(np.random.uniform(-2, 2, (1, 1, 1, 1)).astype(np.int32)) x1 = Tensor(np.random.uniform(-2, 2, (1, 3, 1, 4)).astype(np.int32)) y1 = Tensor(np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(np.int32)) x2 = Tensor(np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(np.int32)) y2 = Tensor(2, mstype.int32) x3 = Tensor(2, mstype.int32) y3 = Tensor(2, mstype.int32) x4 = Tensor(np.random.uniform(-2, 2, (4)).astype(np.int32)) y4 = Tensor(np.random.uniform(-2, 2, (4, 4)).astype(np.int32)) mul = Net() out = mul(x0, y0).asnumpy() exp = x0.asnumpy() * y0.asnumpy() diff = np.abs(out - exp) err = np.ones(shape=exp.shape) * 1.0e-5 assert np.all(diff < err) assert out.shape == exp.shape out = mul(x1, y1).asnumpy() exp = x1.asnumpy() * y1.asnumpy() diff = np.abs(out - exp) err = np.ones(shape=exp.shape) * 1.0e-5 assert np.all(diff < err) assert out.shape == exp.shape out = mul(x2, y2).asnumpy() exp = x2.asnumpy() * y2.asnumpy() diff = np.abs(out - exp) err = np.ones(shape=exp.shape) * 1.0e-5 assert np.all(diff < err) assert out.shape == exp.shape out = mul(x3, y3).asnumpy() exp = x3.asnumpy() * y3.asnumpy() diff = np.abs(out - exp) err = np.ones(shape=exp.shape) * 1.0e-5 assert np.all(diff < err) assert out.shape == exp.shape out = mul(x4, y4).asnumpy() exp = x4.asnumpy() * y4.asnumpy() diff = np.abs(out - exp) err = np.ones(shape=exp.shape) * 1.0e-5 assert np.all(diff < err) assert out.shape == exp.shape