# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor context.set_context(device_target="GPU") class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.dense = nn.Dense(2048, 1001) def construct(self, x): return self.dense(x) class MultiLayerDense(nn.Cell): def __init__(self): super(MultiLayerDense, self).__init__() self.dense1 = nn.Dense(in_channels=256, out_channels=512) self.dense2 = nn.Dense(in_channels=512, out_channels=1024) def construct(self, x): x = self.dense1(x) x = self.dense2(x) return x def test_net(): x = np.random.randn(32, 2048).astype(np.float32) net = Net() output = net(Tensor(x)) print(x) print(output.asnumpy()) def test_net_ND(): x = np.random.randn(2, 332, 2048).astype(np.float32) net = Net() output = net(Tensor(x)) print(x) print(output.asnumpy()) def test_net_multilayer(): x = np.random.randn(16, 32, 256).astype(np.float32) net = MultiLayerDense() output = net(Tensor(x)) print(x) print(output.asnumpy())