# Copyright 2020-2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest from mindspore import Tensor from mindspore.ops import operations as P import mindspore.nn as nn import mindspore.context as context class GatherNdNet(nn.Cell): def __init__(self): super(GatherNdNet, self).__init__() self.gathernd = P.GatherNd() def construct(self, x, indices): return self.gathernd(x, indices) def gathernd0(nptype): x = Tensor(np.arange(3 * 2, dtype=nptype).reshape(3, 2)) indices = Tensor(np.array([[1, 1], [0, 1]]).astype(np.int32)) expect = np.array([3, 1]).astype(nptype) context.set_context(mode=context.GRAPH_MODE, device_target="GPU") gathernd = GatherNdNet() output = gathernd(x, indices) assert np.array_equal(output.asnumpy(), expect) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_gathernd0_float64(): gathernd0(np.float64) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_gathernd0_float32(): gathernd0(np.float32) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_gathernd0_float16(): gathernd0(np.float16) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_gathernd0_int32(): gathernd0(np.int32) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_gathernd0_int16(): gathernd0(np.int16) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_gathernd0_uint8(): gathernd0(np.uint8) def gathernd1(nptype): x = Tensor(np.arange(2 * 3 * 4 * 5, dtype=nptype).reshape(2, 3, 4, 5)) indices = Tensor(np.array([[[[[l, k, j, i] for i in [1, 3, 4]] for j in range(4)] for k in range(3)] for l in range(2)], dtype='i4')) expect = np.array([[[[1., 3., 4.], [6., 8., 9.], [11., 13., 14.], [16., 18., 19.]], [[21., 23., 24.], [26., 28., 29.], [31., 33., 34.], [36., 38., 39.]], [[41., 43., 44.], [46., 48., 49.], [51., 53., 54.], [56., 58., 59.]]], [[[61., 63., 64.], [66., 68., 69.], [71., 73., 74.], [76., 78., 79.]], [[81., 83., 84.], [86., 88., 89.], [91., 93., 94.], [96., 98., 99.]], [[101., 103., 104.], [106., 108., 109.], [111., 113., 114.], [116., 118., 119.]]]]).astype(nptype) context.set_context(mode=context.GRAPH_MODE, device_target="GPU") gather = GatherNdNet() output = gather(x, indices) assert np.array_equal(output.asnumpy(), expect) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_gathernd1_float64(): gathernd1(np.float64) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_gathernd1_float32(): gathernd1(np.float32) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_gathernd1_float16(): gathernd1(np.float16) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_gathernd1_int32(): gathernd1(np.int32) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_gathernd1_int16(): gathernd1(np.int16) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_gathernd1_uint8(): gathernd1(np.uint8) def gathernd2(nptype): x = Tensor(np.array([[4., 5., 4., 1., 5.], [4., 9., 5., 6., 4.], [9., 8., 4., 3., 6.], [0., 4., 2., 2., 8.], [1., 8., 6., 2., 8.], [8., 1., 9., 7., 3.], [7., 9., 2., 5., 7.], [9., 8., 6., 8., 5.], [3., 7., 2., 7., 4.], [4., 2., 8., 2., 9.]]).astype(np.float16)) indices = Tensor(np.array([[4000], [1], [300000]]).astype(np.int32)) expect = np.array([[0., 0., 0., 0., 0.], [4., 9., 5., 6., 4.], [0., 0., 0., 0., 0.]]) context.set_context(mode=context.GRAPH_MODE, device_target="GPU") gathernd = GatherNdNet() output = gathernd(x, indices) assert np.array_equal(output.asnumpy(), expect) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_gathernd2_float64(): gathernd2(np.float64) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_gathernd2_float32(): gathernd2(np.float32) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_gathernd2_float16(): gathernd2(np.float16) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_gathernd2_int32(): gathernd2(np.int32) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_gathernd2_int16(): gathernd2(np.int16) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_gathernd2_uint8(): gathernd2(np.uint8) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_gathernd_bool(): x = Tensor(np.array([[True, False], [False, False]]).astype(np.bool)) indices = Tensor(np.array([[0, 0], [0, 1], [1, 0], [1, 1]]).astype(np.int32)) expect = np.array([True, False, False, False]).astype(np.bool) context.set_context(mode=context.GRAPH_MODE, device_target="GPU") gathernd = GatherNdNet() output = gathernd(x, indices) assert np.array_equal(output.asnumpy(), expect) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_gathernd_indices_int64(): x = Tensor(np.array([[True, False], [False, False]]).astype(np.bool)) indices = Tensor(np.array([[0, 0], [0, 1], [1, 0], [1, 1]]).astype(np.int64)) expect = np.array([True, False, False, False]).astype(np.bool) context.set_context(mode=context.GRAPH_MODE, device_target="GPU") gathernd = GatherNdNet() output = gathernd(x, indices) assert np.array_equal(output.asnumpy(), expect)