# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.common.api import ms_function from mindspore.ops import functional as F from mindspore.ops.composite import GradOperation context.set_context(mode=context.GRAPH_MODE, device_target="GPU") class Grad(nn.Cell): def __init__(self, network): super(Grad, self).__init__() self.grad = GradOperation(get_all=True, sens_param=True) self.network = network @ms_function def construct(self, input_x, grad): return self.grad(self.network)(input_x, grad) class Net(nn.Cell): def __init__(self, n): super(Net, self).__init__() self.ops = nn.BatchNorm2d(n, use_batch_statistics=True, gamma_init=0.5, beta_init=0.5) def construct(self, x): shape = F.shape(x) return F.reshape(self.ops(F.reshape(x, (1, -1, shape[2], shape[3]))), shape) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_InstanceNorm2d_fp32(): x_np = np.random.randn(3, 3, 2, 2).astype(np.float32) bn_instance_comp = Net(3 * 3) bn_instance_op = nn.InstanceNorm2d(3, use_batch_statistics=True, gamma_init=0.5, beta_init=0.5) comp_out = bn_instance_comp(Tensor(x_np)) op_out = bn_instance_op(Tensor(x_np)) assert np.allclose(comp_out.asnumpy(), op_out.asnumpy()) sens = np.random.randn(3, 3, 2, 2).astype(np.float32) bn_comp_backward_net = Grad(bn_instance_comp) bn_op_backward_net = Grad(bn_instance_op) output1 = bn_comp_backward_net(Tensor(x_np), Tensor(sens)) output2 = bn_op_backward_net(Tensor(x_np), Tensor(sens)) assert np.allclose(output1[0].asnumpy(), output2[0].asnumpy())