import numpy as np import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor context.set_context(mode=context.GRAPH_MODE, device_target="GPU") class Net(nn.Cell): def __init__(self, transpose_x1, transpose_x2): super(Net, self).__init__() self.matmul = nn.MatMul(transpose_x1, transpose_x2) def construct(self, x1, x2): return self.matmul(x1, x2) def test_x1_2D_x2_3D(): x1 = np.random.randn(16, 64).astype(np.float32) x2 = np.random.randn(32, 64, 20).astype(np.float32) transpose_x1 = False transpose_x2 = False net = Net(transpose_x1, transpose_x2) output = net(Tensor(x1), Tensor(x2)) assert output.shape == (32, 16, 20) def test_x1_4D_x2_3D_transpose_x2_True(): x1 = np.random.randn(3, 2, 3, 4).astype(np.float32) x2 = np.random.randn(1, 5, 4).astype(np.float32) transpose_x1 = False transpose_x2 = True net = Net(transpose_x1, transpose_x2) output = net(Tensor(x1), Tensor(x2)) assert output.shape == (3, 2, 3, 5) def test_x1_3D_transpose_x1_True_x2_2D(): x1 = np.random.randn(2, 3, 4).astype(np.float32) x2 = np.random.randn(3, 4).astype(np.float32) transpose_x1 = True transpose_x2 = False net = Net(transpose_x1, transpose_x2) output = net(Tensor(x1), Tensor(x2)) assert output.shape == (2, 4, 4) def test_x1_3D_transpose_x1_True_x2_3D_transpose_x2_True(): x1 = np.random.randn(2, 5, 6).astype(np.float32) x2 = np.random.randn(2, 4, 5).astype(np.float32) transpose_x1 = True transpose_x2 = True net = Net(transpose_x1, transpose_x2) output = net(Tensor(x1), Tensor(x2)) assert output.shape == (2, 6, 4) def test_x1_1D_x2_1D(): x1 = np.random.randn(4).astype(np.float32) x2 = np.random.randn(4).astype(np.float32) transpose_x1 = False transpose_x2 = False net = Net(transpose_x1, transpose_x2) output = net(Tensor(x1), Tensor(x2)) assert output.shape == () def test_x1_1D_x2_3D(): x1 = np.random.randn(4).astype(np.float32) x2 = np.random.randn(2, 4, 5).astype(np.float32) transpose_x1 = False transpose_x2 = False net = Net(transpose_x1, transpose_x2) output = net(Tensor(x1), Tensor(x2)) assert output.shape == (2, 5) def test_x1_3D_x2_1D(): x1 = np.random.randn(2, 4, 5).astype(np.float32) x2 = np.random.randn(5).astype(np.float32) transpose_x1 = False transpose_x2 = False net = Net(transpose_x1, transpose_x2) output = net(Tensor(x1), Tensor(x2)) assert output.shape == (2, 4) def test_x1_1D_transpose_x1_True_x2_3D(): x1 = np.random.randn(4).astype(np.float32) x2 = np.random.randn(2, 4, 5).astype(np.float32) transpose_x1 = True transpose_x2 = False net = Net(transpose_x1, transpose_x2) output = net(Tensor(x1), Tensor(x2)) assert output.shape == (2, 5) def test_x1_3D_x2_1D_transpose_x2_True(): x1 = np.random.randn(2, 4, 5).astype(np.float32) x2 = np.random.randn(5).astype(np.float32) transpose_x1 = False transpose_x2 = True net = Net(transpose_x1, transpose_x2) output = net(Tensor(x1), Tensor(x2)) assert output.shape == (2, 4)