# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest from mindspore import Tensor import mindspore.nn as nn from mindspore.ops import operations as P import mindspore.context as context class PrintNetOneInput(nn.Cell): def __init__(self): super(PrintNetOneInput, self).__init__() self.op = P.Print() def construct(self, x): self.op(x) return x class PrintNetTwoInputs(nn.Cell): def __init__(self): super(PrintNetTwoInputs, self).__init__() self.op = P.Print() def construct(self, x, y): self.op(x, y) return x class PrintNetIndex(nn.Cell): def __init__(self): super(PrintNetIndex, self).__init__() self.op = P.Print() def construct(self, x): self.op(x[0][0][6][3]) return x def print_testcase(nptype): # large shape x = np.arange(20808).reshape(6, 3, 34, 34).astype(nptype) # a value that can be stored as int8_t x[0][0][6][3] = 125 # small shape y = np.arange(9).reshape(3, 3).astype(nptype) x = Tensor(x) y = Tensor(y) # graph mode context.set_context(mode=context.GRAPH_MODE, device_target="GPU") net_1 = PrintNetOneInput() net_2 = PrintNetTwoInputs() net_3 = PrintNetIndex() net_1(x) net_2(x, y) net_3(x) class PrintNetString(nn.Cell): def __init__(self): super(PrintNetString, self).__init__() self.op = P.Print() def construct(self, x, y): self.op("The first Tensor is", x) self.op("The second Tensor is", y) self.op("This line only prints string", "Another line") self.op("The first Tensor is", x, y, "is the second Tensor") return x def print_testcase_string(nptype): x = np.ones(18).astype(nptype) y = np.arange(9).reshape(3, 3).astype(nptype) x = Tensor(x) y = Tensor(y) # graph mode context.set_context(mode=context.GRAPH_MODE, device_target="GPU") net = PrintNetString() net(x, y) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_print_bool(): print_testcase(np.bool) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_print_int8(): print_testcase(np.int8) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_print_int16(): print_testcase(np.int16) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_print_int32(): print_testcase(np.int32) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_print_int64(): print_testcase(np.int64) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_print_uint8(): print_testcase(np.uint8) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_print_uint16(): print_testcase(np.uint16) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_print_uint32(): print_testcase(np.uint32) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_print_uint64(): print_testcase(np.uint64) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_print_float16(): print_testcase(np.float16) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_print_float32(): print_testcase(np.float32) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_print_string(): print_testcase_string(np.float32)